File size: 16,294 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->

<div style="float: right;">
  <div class="flex flex-wrap space-x-1">
    <a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
      <img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
    </a>
    <img alt="MPS" src="https://img.shields.io/badge/MPS-000000?style=flat&logo=apple&logoColor=white%22">
  </div>
</div>

# LTX-Video

[LTX-Video](https://huggingface.co/Lightricks/LTX-Video) is a diffusion transformer designed for fast and real-time generation of high-resolution videos from text and images. The main feature of LTX-Video is the Video-VAE. The Video-VAE has a higher pixel to latent compression ratio (1:192) which enables more efficient video data processing and faster generation speed. To support and prevent finer details from being lost during generation, the Video-VAE decoder performs the latent to pixel conversion *and* the last denoising step.

You can find all the original LTX-Video checkpoints under the [Lightricks](https://huggingface.co/Lightricks) organization.

> [!TIP]
> Click on the LTX-Video models in the right sidebar for more examples of other video generation tasks.

The example below demonstrates how to generate a video optimized for memory or inference speed.

<hfoptions id="usage">
<hfoption id="memory">

Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.

The LTX-Video model below requires ~10GB of VRAM.

```py
import torch
from diffusers import LTXPipeline, AutoModel
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video

# fp8 layerwise weight-casting
transformer = AutoModel.from_pretrained(
    "Lightricks/LTX-Video",
    subfolder="transformer",
    torch_dtype=torch.bfloat16
)
transformer.enable_layerwise_casting(
    storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16
)

pipeline = LTXPipeline.from_pretrained("Lightricks/LTX-Video", transformer=transformer, torch_dtype=torch.bfloat16)

# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
pipeline.transformer.enable_group_offload(onload_device=onload_device, offload_device=offload_device, offload_type="leaf_level", use_stream=True)
apply_group_offloading(pipeline.text_encoder, onload_device=onload_device, offload_type="block_level", num_blocks_per_group=2)
apply_group_offloading(pipeline.vae, onload_device=onload_device, offload_type="leaf_level")

prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair.
The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek.
The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and 
natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"

video = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=768,
    height=512,
    num_frames=161,
    decode_timestep=0.03,
    decode_noise_scale=0.025,
    num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```

</hfoption>
<hfoption id="inference speed">

[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.

```py
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video

pipeline = LTXPipeline.from_pretrained(
    "Lightricks/LTX-Video", torch_dtype=torch.bfloat16
)

# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
    pipeline.transformer, mode="max-autotune", fullgraph=True
)

prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair.
The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek.
The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and 
natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"

video = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=768,
    height=512,
    num_frames=161,
    decode_timestep=0.03,
    decode_noise_scale=0.025,
    num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
```

</hfoption>
</hfoptions>

## Notes

- Refer to the following recommended settings for generation from the [LTX-Video](https://github.com/Lightricks/LTX-Video) repository.

  - The recommended dtype for the transformer, VAE, and text encoder is `torch.bfloat16`. The VAE and text encoder can also be `torch.float32` or `torch.float16`.
  - For guidance-distilled variants of LTX-Video, set `guidance_scale` to `1.0`. The `guidance_scale` for any other model should be set higher, like `5.0`, for good generation quality.
  - For timestep-aware VAE variants (LTX-Video 0.9.1 and above), set `decode_timestep` to `0.05` and `image_cond_noise_scale` to `0.025`.
  - For variants that support interpolation between multiple conditioning images and videos (LTX-Video 0.9.5 and above), use similar images and videos for the best results. Divergence from the conditioning inputs may lead to abrupt transitionts in the generated video.

- LTX-Video 0.9.7 includes a spatial latent upscaler and a 13B parameter transformer. During inference, a low resolution video is quickly generated first and then upscaled and refined.

  <details>
  <summary>Show example code</summary>

  ```py
  import torch
  from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
  from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
  from diffusers.utils import export_to_video, load_video

  pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
  pipeline_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=torch.bfloat16)
  pipeline.to("cuda")
  pipe_upsample.to("cuda")
  pipeline.vae.enable_tiling()

  def round_to_nearest_resolution_acceptable_by_vae(height, width):
      height = height - (height % pipeline.vae_temporal_compression_ratio)
      width = width - (width % pipeline.vae_temporal_compression_ratio)
      return height, width

  video = load_video(
      "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4"
  )[:21]  # only use the first 21 frames as conditioning
  condition1 = LTXVideoCondition(video=video, frame_index=0)

  prompt = """
  The video depicts a winding mountain road covered in snow, with a single vehicle 
  traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. 
  The landscape is characterized by rugged terrain and a river visible in the distance. 
  The scene captures the solitude and beauty of a winter drive through a mountainous region.
  """
  negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
  expected_height, expected_width = 768, 1152
  downscale_factor = 2 / 3
  num_frames = 161

  # 1. Generate video at smaller resolution
  # Text-only conditioning is also supported without the need to pass `conditions`
  downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
  downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
  latents = pipeline(
      conditions=[condition1],
      prompt=prompt,
      negative_prompt=negative_prompt,
      width=downscaled_width,
      height=downscaled_height,
      num_frames=num_frames,
      num_inference_steps=30,
      decode_timestep=0.05,
      decode_noise_scale=0.025,
      image_cond_noise_scale=0.0,
      guidance_scale=5.0,
      guidance_rescale=0.7,
      generator=torch.Generator().manual_seed(0),
      output_type="latent",
  ).frames

  # 2. Upscale generated video using latent upsampler with fewer inference steps
  # The available latent upsampler upscales the height/width by 2x
  upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
  upscaled_latents = pipe_upsample(
      latents=latents,
      output_type="latent"
  ).frames

  # 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
  video = pipeline(
      conditions=[condition1],
      prompt=prompt,
      negative_prompt=negative_prompt,
      width=upscaled_width,
      height=upscaled_height,
      num_frames=num_frames,
      denoise_strength=0.4,  # Effectively, 4 inference steps out of 10
      num_inference_steps=10,
      latents=upscaled_latents,
      decode_timestep=0.05,
      decode_noise_scale=0.025,
      image_cond_noise_scale=0.0,
      guidance_scale=5.0,
      guidance_rescale=0.7,
      generator=torch.Generator().manual_seed(0),
      output_type="pil",
  ).frames[0]

  # 4. Downscale the video to the expected resolution
  video = [frame.resize((expected_width, expected_height)) for frame in video]

  export_to_video(video, "output.mp4", fps=24)
  ```

  </details>

- LTX-Video 0.9.7 distilled model is guidance and timestep-distilled to speedup generation. It requires `guidance_scale` to be set to `1.0` and `num_inference_steps` should be set between `4` and `10` for good generation quality. You should also use the following custom timesteps for the best results.

  - Base model inference to prepare for upscaling: `[1000, 993, 987, 981, 975, 909, 725, 0.03]`.
  - Upscaling: `[1000, 909, 725, 421, 0]`.

  <details>
  <summary>Show example code</summary>

  ```py
  import torch
  from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
  from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
  from diffusers.utils import export_to_video, load_video

  pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
  pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=torch.bfloat16)
  pipeline.to("cuda")
  pipe_upsample.to("cuda")
  pipeline.vae.enable_tiling()

  def round_to_nearest_resolution_acceptable_by_vae(height, width):
      height = height - (height % pipeline.vae_temporal_compression_ratio)
      width = width - (width % pipeline.vae_temporal_compression_ratio)
      return height, width

  prompt = """
  artistic anatomical 3d render, utlra quality, human half full male body with transparent 
  skin revealing structure instead of organs, muscular, intricate creative patterns, 
  monochromatic with backlighting, lightning mesh, scientific concept art, blending biology 
  with botany, surreal and ethereal quality, unreal engine 5, ray tracing, ultra realistic, 
  16K UHD, rich details. camera zooms out in a rotating fashion
  """
  negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
  expected_height, expected_width = 768, 1152
  downscale_factor = 2 / 3
  num_frames = 161

  # 1. Generate video at smaller resolution
  downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
  downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
  latents = pipeline(
      prompt=prompt,
      negative_prompt=negative_prompt,
      width=downscaled_width,
      height=downscaled_height,
      num_frames=num_frames,
      timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03],
      decode_timestep=0.05,
      decode_noise_scale=0.025,
      image_cond_noise_scale=0.0,
      guidance_scale=1.0,
      guidance_rescale=0.7,
      generator=torch.Generator().manual_seed(0),
      output_type="latent",
  ).frames

  # 2. Upscale generated video using latent upsampler with fewer inference steps
  # The available latent upsampler upscales the height/width by 2x
  upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
  upscaled_latents = pipe_upsample(
      latents=latents,
      adain_factor=1.0,
      output_type="latent"
  ).frames

  # 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
  video = pipeline(
      prompt=prompt,
      negative_prompt=negative_prompt,
      width=upscaled_width,
      height=upscaled_height,
      num_frames=num_frames,
      denoise_strength=0.999,  # Effectively, 4 inference steps out of 5
      timesteps=[1000, 909, 725, 421, 0],
      latents=upscaled_latents,
      decode_timestep=0.05,
      decode_noise_scale=0.025,
      image_cond_noise_scale=0.0,
      guidance_scale=1.0,
      guidance_rescale=0.7,
      generator=torch.Generator().manual_seed(0),
      output_type="pil",
  ).frames[0]

  # 4. Downscale the video to the expected resolution
  video = [frame.resize((expected_width, expected_height)) for frame in video]

  export_to_video(video, "output.mp4", fps=24)
  ```

  </details>

- LTX-Video supports LoRAs with [`~loaders.LTXVideoLoraLoaderMixin.load_lora_weights`].

  <details>
  <summary>Show example code</summary>

  ```py
  import torch
  from diffusers import LTXConditionPipeline
  from diffusers.utils import export_to_video, load_image

  pipeline = LTXConditionPipeline.from_pretrained(
      "Lightricks/LTX-Video-0.9.5", torch_dtype=torch.bfloat16
  )

  pipeline.load_lora_weights("Lightricks/LTX-Video-Cakeify-LoRA", adapter_name="cakeify")
  pipeline.set_adapters("cakeify")

  # use "CAKEIFY" to trigger the LoRA
  prompt = "CAKEIFY a person using a knife to cut a cake shaped like a Pikachu plushie"
  image = load_image("https://huggingface.co/Lightricks/LTX-Video-Cakeify-LoRA/resolve/main/assets/images/pikachu.png")

  video = pipeline(
      prompt=prompt,
      image=image,
      width=576,
      height=576,
      num_frames=161,
      decode_timestep=0.03,
      decode_noise_scale=0.025,
      num_inference_steps=50,
  ).frames[0]
  export_to_video(video, "output.mp4", fps=26)
  ```

  </details>

- LTX-Video supports loading from single files, such as [GGUF checkpoints](../../quantization/gguf), with [`loaders.FromOriginalModelMixin.from_single_file`] or [`loaders.FromSingleFileMixin.from_single_file`].

  <details>
  <summary>Show example code</summary>

  ```py
  import torch
  from diffusers.utils import export_to_video
  from diffusers import LTXPipeline, AutoModel, GGUFQuantizationConfig

  transformer = AutoModel.from_single_file(
      "https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3_K_S.gguf"
      quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
      torch_dtype=torch.bfloat16
  )
  pipeline = LTXPipeline.from_pretrained(
      "Lightricks/LTX-Video",
      transformer=transformer,
      torch_dtype=torch.bfloat16
  )
  ```

  </details>

## LTXPipeline

[[autodoc]] LTXPipeline
  - all
  - __call__

## LTXImageToVideoPipeline

[[autodoc]] LTXImageToVideoPipeline
  - all
  - __call__

## LTXConditionPipeline

[[autodoc]] LTXConditionPipeline
  - all
  - __call__

## LTXLatentUpsamplePipeline

[[autodoc]] LTXLatentUpsamplePipeline
  - all
  - __call__

## LTXPipelineOutput

[[autodoc]] pipelines.ltx.pipeline_output.LTXPipelineOutput