Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,402 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# # Copyright 2024 Sana-Sprint Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..schedulers.scheduling_utils import SchedulerMixin
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->SCM
class SCMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None
class SCMScheduler(SchedulerMixin, ConfigMixin):
"""
`SCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass
documentation for the generic methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
prediction_type (`str`, defaults to `trigflow`):
Prediction type of the scheduler function. Currently only supports "trigflow".
sigma_data (`float`, defaults to 0.5):
The standard deviation of the noise added during multi-step inference.
"""
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
prediction_type: str = "trigflow",
sigma_data: float = 0.5,
):
"""
Initialize the SCM scheduler.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
prediction_type (`str`, defaults to `trigflow`):
Prediction type of the scheduler function. Currently only supports "trigflow".
sigma_data (`float`, defaults to 0.5):
The standard deviation of the noise added during multi-step inference.
"""
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
self._step_index = None
self._begin_index = None
@property
def step_index(self):
return self._step_index
@property
def begin_index(self):
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def set_timesteps(
self,
num_inference_steps: int,
timesteps: torch.Tensor = None,
device: Union[str, torch.device] = None,
max_timesteps: float = 1.57080,
intermediate_timesteps: float = 1.3,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
timesteps (`torch.Tensor`, *optional*):
Custom timesteps to use for the denoising process.
max_timesteps (`float`, defaults to 1.57080):
The maximum timestep value used in the SCM scheduler.
intermediate_timesteps (`float`, *optional*, defaults to 1.3):
The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
"""
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
if timesteps is not None and len(timesteps) != num_inference_steps + 1:
raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.")
if timesteps is not None and max_timesteps is not None:
raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.")
if timesteps is None and max_timesteps is None:
raise ValueError("Should provide either `timesteps` or `max_timesteps`.")
if intermediate_timesteps is not None and num_inference_steps != 2:
raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.")
self.num_inference_steps = num_inference_steps
if timesteps is not None:
if isinstance(timesteps, list):
self.timesteps = torch.tensor(timesteps, device=device).float()
elif isinstance(timesteps, torch.Tensor):
self.timesteps = timesteps.to(device).float()
else:
raise ValueError(f"Unsupported timesteps type: {type(timesteps)}")
elif intermediate_timesteps is not None:
self.timesteps = torch.tensor([max_timesteps, intermediate_timesteps, 0], device=device).float()
else:
# max_timesteps=arctan(80/0.5)=1.56454 is the default from sCM paper, we choose a different value here
self.timesteps = torch.linspace(max_timesteps, 0, num_inference_steps + 1, device=device).float()
print(f"Set timesteps: {self.timesteps}")
self._step_index = None
self._begin_index = None
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def step(
self,
model_output: torch.FloatTensor,
timestep: float,
sample: torch.FloatTensor,
generator: torch.Generator = None,
return_dict: bool = True,
) -> Union[SCMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_scm.SCMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SCMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_scm.SCMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
# 2. compute alphas, betas
t = self.timesteps[self.step_index + 1]
s = self.timesteps[self.step_index]
# 4. Different Parameterization:
parameterization = self.config.prediction_type
if parameterization == "trigflow":
pred_x0 = torch.cos(s) * sample - torch.sin(s) * model_output
else:
raise ValueError(f"Unsupported parameterization: {parameterization}")
# 5. Sample z ~ N(0, I), For MultiStep Inference
# Noise is not used for one-step sampling.
if len(self.timesteps) > 1:
noise = (
randn_tensor(model_output.shape, device=model_output.device, generator=generator)
* self.config.sigma_data
)
prev_sample = torch.cos(t) * pred_x0 + torch.sin(t) * noise
else:
prev_sample = pred_x0
self._step_index += 1
if not return_dict:
return (prev_sample, pred_x0)
return SCMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0)
def __len__(self):
return self.config.num_train_timesteps
|