Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,690 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
# Copyright 2024 OmniGen team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import LlamaTokenizer
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...models.autoencoders import AutoencoderKL
from ...models.transformers import OmniGenTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .processor_omnigen import OmniGenMultiModalProcessor
if is_torch_xla_available():
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import OmniGenPipeline
>>> pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1-diffusers", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(prompt, num_inference_steps=50, guidance_scale=2.5).images[0]
>>> image.save("output.png")
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class OmniGenPipeline(
DiffusionPipeline,
):
r"""
The OmniGen pipeline for multimodal-to-image generation.
Reference: https://huggingface.co/papers/2409.11340
Args:
transformer ([`OmniGenTransformer2DModel`]):
Autoregressive Transformer architecture for OmniGen.
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
tokenizer (`LlamaTokenizer`):
Text tokenizer of class.
[LlamaTokenizer](https://huggingface.co/docs/transformers/main/model_doc/llama#transformers.LlamaTokenizer).
"""
model_cpu_offload_seq = "transformer->vae"
_optional_components = []
_callback_tensor_inputs = ["latents"]
def __init__(
self,
transformer: OmniGenTransformer2DModel,
scheduler: FlowMatchEulerDiscreteScheduler,
vae: AutoencoderKL,
tokenizer: LlamaTokenizer,
):
super().__init__()
self.register_modules(
vae=vae,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) is not None else 8
)
# OmniGen latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
self.multimodal_processor = OmniGenMultiModalProcessor(tokenizer, max_image_size=1024)
self.tokenizer_max_length = (
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 120000
)
self.default_sample_size = 128
def encode_input_images(
self,
input_pixel_values: List[torch.Tensor],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
"""
get the continue embedding of input images by VAE
Args:
input_pixel_values: normalized pixel of input images
device:
Returns: torch.Tensor
"""
device = device or self._execution_device
dtype = dtype or self.vae.dtype
input_img_latents = []
for img in input_pixel_values:
img = self.vae.encode(img.to(device, dtype)).latent_dist.sample().mul_(self.vae.config.scaling_factor)
input_img_latents.append(img)
return input_img_latents
def check_inputs(
self,
prompt,
input_images,
height,
width,
use_input_image_size_as_output,
callback_on_step_end_tensor_inputs=None,
):
if input_images is not None:
if len(input_images) != len(prompt):
raise ValueError(
f"The number of prompts: {len(prompt)} does not match the number of input images: {len(input_images)}."
)
for i in range(len(input_images)):
if input_images[i] is not None:
if not all(f"<img><|image_{k + 1}|></img>" in prompt[i] for k in range(len(input_images[i]))):
raise ValueError(
f"prompt `{prompt[i]}` doesn't have enough placeholders for the input images `{input_images[i]}`"
)
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
logger.warning(
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
)
if use_input_image_size_as_output:
if input_images is None or input_images[0] is None:
raise ValueError(
"`use_input_image_size_as_output` is set to True, but no input image was found. If you are performing a text-to-image task, please set it to False."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]],
input_images: Union[PipelineImageInput, List[PipelineImageInput]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
max_input_image_size: int = 1024,
timesteps: List[int] = None,
guidance_scale: float = 2.5,
img_guidance_scale: float = 1.6,
use_input_image_size_as_output: bool = False,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If the input includes images, need to add
placeholders `<img><|image_i|></img>` in the prompt to indicate the position of the i-th images.
input_images (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*):
The list of input images. We will replace the "<|image_i|>" in prompt with the i-th image in list.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
max_input_image_size (`int`, *optional*, defaults to 1024):
the maximum size of input image, which will be used to crop the input image to the maximum size
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 2.5):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
img_guidance_scale (`float`, *optional*, defaults to 1.6):
Defined as equation 3 in [Instrucpix2pix](https://huggingface.co/papers/2211.09800).
use_input_image_size_as_output (bool, defaults to False):
whether to use the input image size as the output image size, which can be used for single-image input,
e.g., image editing task
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned
where the first element is a list with the generated images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
num_cfg = 2 if input_images is not None else 1
use_img_cfg = True if input_images is not None else False
if isinstance(prompt, str):
prompt = [prompt]
input_images = [input_images]
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
input_images,
height,
width,
use_input_image_size_as_output,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._interrupt = False
# 2. Define call parameters
batch_size = len(prompt)
device = self._execution_device
# 3. process multi-modal instructions
if max_input_image_size != self.multimodal_processor.max_image_size:
self.multimodal_processor.reset_max_image_size(max_image_size=max_input_image_size)
processed_data = self.multimodal_processor(
prompt,
input_images,
height=height,
width=width,
use_img_cfg=use_img_cfg,
use_input_image_size_as_output=use_input_image_size_as_output,
num_images_per_prompt=num_images_per_prompt,
)
processed_data["input_ids"] = processed_data["input_ids"].to(device)
processed_data["attention_mask"] = processed_data["attention_mask"].to(device)
processed_data["position_ids"] = processed_data["position_ids"].to(device)
# 4. Encode input images
input_img_latents = self.encode_input_images(processed_data["input_pixel_values"], device=device)
# 5. Prepare timesteps
sigmas = np.linspace(1, 0, num_inference_steps + 1)[:num_inference_steps]
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
)
self._num_timesteps = len(timesteps)
# 6. Prepare latents
transformer_dtype = self.transformer.dtype
if use_input_image_size_as_output:
height, width = processed_data["input_pixel_values"][0].shape[-2:]
latent_channels = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
latent_channels,
height,
width,
torch.float32,
device,
generator,
latents,
)
# 8. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * (num_cfg + 1))
latent_model_input = latent_model_input.to(transformer_dtype)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
input_ids=processed_data["input_ids"],
input_img_latents=input_img_latents,
input_image_sizes=processed_data["input_image_sizes"],
attention_mask=processed_data["attention_mask"],
position_ids=processed_data["position_ids"],
return_dict=False,
)[0]
if num_cfg == 2:
cond, uncond, img_cond = torch.split(noise_pred, len(noise_pred) // 3, dim=0)
noise_pred = uncond + img_guidance_scale * (img_cond - uncond) + guidance_scale * (cond - img_cond)
else:
cond, uncond = torch.split(noise_pred, len(noise_pred) // 2, dim=0)
noise_pred = uncond + guidance_scale * (cond - uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
progress_bar.update()
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
latents = latents / self.vae.config.scaling_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
else:
image = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
|