File size: 21,377 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# Copyright 2023-2025 Marigold Team, ETH Zürich. All rights reserved.
# Copyright 2024-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# More information and citation instructions are available on the
# Marigold project website: https://marigoldcomputervision.github.io
# --------------------------------------------------------------------------
import gc
import random
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import (
    AutoencoderKL,
    AutoencoderTiny,
    DDIMScheduler,
    MarigoldIntrinsicsPipeline,
    UNet2DConditionModel,
)
from diffusers.utils.testing_utils import (
    backend_empty_cache,
    enable_full_determinism,
    floats_tensor,
    load_image,
    require_torch_accelerator,
    slow,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class MarigoldIntrinsicsPipelineTesterMixin(PipelineTesterMixin):
    def _test_inference_batch_single_identical(
        self,
        batch_size=2,
        expected_max_diff=1e-4,
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)

        logger = diffusers.logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batched_inputs.update(inputs)

        for name in self.batch_params:
            if name not in inputs:
                continue

            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"

            else:
                batched_inputs[name] = batch_size * [value]

        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]

        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]

        output = pipe(**inputs)
        output_batch = pipe(**batched_inputs)

        assert output_batch[0].shape[0] == batch_size * output[0].shape[0]  # only changed here

        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
        assert max_diff < expected_max_diff

    def _test_inference_batch_consistent(
        self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["generator"] = self.get_generator(0)

        logger = diffusers.logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # prepare batched inputs
        batched_inputs = []
        for batch_size in batch_sizes:
            batched_input = {}
            batched_input.update(inputs)

            for name in self.batch_params:
                if name not in inputs:
                    continue

                value = inputs[name]
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_input[name][-1] = 100 * "very long"

                else:
                    batched_input[name] = batch_size * [value]

            if batch_generator and "generator" in inputs:
                batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]

            if "batch_size" in inputs:
                batched_input["batch_size"] = batch_size

            batched_inputs.append(batched_input)

        logger.setLevel(level=diffusers.logging.WARNING)
        for batch_size, batched_input in zip(batch_sizes, batched_inputs):
            output = pipe(**batched_input)
            assert len(output[0]) == batch_size * pipe.n_targets  # only changed here


class MarigoldIntrinsicsPipelineFastTests(MarigoldIntrinsicsPipelineTesterMixin, unittest.TestCase):
    pipeline_class = MarigoldIntrinsicsPipeline
    params = frozenset(["image"])
    batch_params = frozenset(["image"])
    image_params = frozenset(["image"])
    image_latents_params = frozenset(["latents"])
    callback_cfg_params = frozenset([])
    test_xformers_attention = False
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "output_type",
        ]
    )

    def get_dummy_components(self, time_cond_proj_dim=None):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            time_cond_proj_dim=time_cond_proj_dim,
            sample_size=32,
            in_channels=12,
            out_channels=8,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            prediction_type="v_prediction",
            set_alpha_to_one=False,
            steps_offset=1,
            beta_schedule="scaled_linear",
            clip_sample=False,
            thresholding=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "prediction_type": "intrinsics",
        }
        return components

    def get_dummy_tiny_autoencoder(self):
        return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4)

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image / 2 + 0.5
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "image": image,
            "num_inference_steps": 1,
            "processing_resolution": 0,
            "generator": generator,
            "output_type": "np",
        }
        return inputs

    def _test_marigold_intrinsics(
        self,
        generator_seed: int = 0,
        expected_slice: np.ndarray = None,
        atol: float = 1e-4,
        **pipe_kwargs,
    ):
        device = "cpu"
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed)
        pipe_inputs.update(**pipe_kwargs)

        prediction = pipe(**pipe_inputs).prediction

        prediction_slice = prediction[0, -3:, -3:, -1].flatten()

        if pipe_inputs.get("match_input_resolution", True):
            self.assertEqual(prediction.shape, (2, 32, 32, 3), "Unexpected output resolution")
        else:
            self.assertTrue(prediction.shape[0] == 2 and prediction.shape[3] == 3, "Unexpected output dimensions")
            self.assertEqual(
                max(prediction.shape[1:3]),
                pipe_inputs.get("processing_resolution", 768),
                "Unexpected output resolution",
            )

        np.set_printoptions(precision=5, suppress=True)
        msg = f"{prediction_slice}"
        self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol), msg)
        # self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol))

    def test_marigold_depth_dummy_defaults(self):
        self._test_marigold_intrinsics(
            expected_slice=np.array([0.6423, 0.40664, 0.41185, 0.65832, 0.63935, 0.43971, 0.51786, 0.55216, 0.47683]),
        )

    def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            generator_seed=0,
            expected_slice=np.array([0.6423, 0.40664, 0.41185, 0.65832, 0.63935, 0.43971, 0.51786, 0.55216, 0.47683]),
            num_inference_steps=1,
            processing_resolution=32,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            generator_seed=0,
            expected_slice=np.array([0.53132, 0.44487, 0.40164, 0.5326, 0.49073, 0.46979, 0.53324, 0.51366, 0.50387]),
            num_inference_steps=1,
            processing_resolution=16,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            generator_seed=2024,
            expected_slice=np.array([0.40257, 0.39468, 0.51373, 0.4161, 0.40162, 0.58535, 0.43581, 0.47834, 0.48951]),
            num_inference_steps=1,
            processing_resolution=32,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            generator_seed=0,
            expected_slice=np.array([0.49636, 0.4518, 0.42722, 0.59044, 0.6362, 0.39011, 0.53522, 0.55153, 0.48699]),
            num_inference_steps=2,
            processing_resolution=32,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            generator_seed=0,
            expected_slice=np.array([0.55547, 0.43511, 0.4887, 0.56399, 0.63867, 0.56337, 0.47889, 0.52925, 0.49235]),
            num_inference_steps=1,
            processing_resolution=64,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self):
        self._test_marigold_intrinsics(
            generator_seed=0,
            expected_slice=np.array([0.57249, 0.49824, 0.54438, 0.57733, 0.52404, 0.5255, 0.56493, 0.56336, 0.48579]),
            num_inference_steps=1,
            processing_resolution=32,
            ensemble_size=3,
            ensembling_kwargs={"reduction": "mean"},
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self):
        self._test_marigold_intrinsics(
            generator_seed=0,
            expected_slice=np.array([0.6294, 0.5575, 0.53414, 0.61077, 0.57156, 0.53974, 0.52956, 0.55467, 0.48751]),
            num_inference_steps=1,
            processing_resolution=32,
            ensemble_size=4,
            ensembling_kwargs={"reduction": "mean"},
            batch_size=2,
            match_input_resolution=True,
        )

    def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self):
        self._test_marigold_intrinsics(
            generator_seed=0,
            expected_slice=np.array([0.63511, 0.68137, 0.48783, 0.46689, 0.58505, 0.36757, 0.58465, 0.54302, 0.50387]),
            num_inference_steps=1,
            processing_resolution=16,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=False,
        )

    def test_marigold_depth_dummy_no_num_inference_steps(self):
        with self.assertRaises(ValueError) as e:
            self._test_marigold_intrinsics(
                num_inference_steps=None,
                expected_slice=np.array([0.0]),
            )
            self.assertIn("num_inference_steps", str(e))

    def test_marigold_depth_dummy_no_processing_resolution(self):
        with self.assertRaises(ValueError) as e:
            self._test_marigold_intrinsics(
                processing_resolution=None,
                expected_slice=np.array([0.0]),
            )
            self.assertIn("processing_resolution", str(e))


@slow
@require_torch_accelerator
class MarigoldIntrinsicsPipelineIntegrationTests(unittest.TestCase):
    def setUp(self):
        super().setUp()
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def _test_marigold_intrinsics(
        self,
        is_fp16: bool = True,
        device: str = "cuda",
        generator_seed: int = 0,
        expected_slice: np.ndarray = None,
        model_id: str = "prs-eth/marigold-iid-appearance-v1-1",
        image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg",
        atol: float = 1e-4,
        **pipe_kwargs,
    ):
        from_pretrained_kwargs = {}
        if is_fp16:
            from_pretrained_kwargs["variant"] = "fp16"
            from_pretrained_kwargs["torch_dtype"] = torch.float16

        pipe = MarigoldIntrinsicsPipeline.from_pretrained(model_id, **from_pretrained_kwargs)
        if device in ["cuda", "xpu"]:
            pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device=device).manual_seed(generator_seed)

        image = load_image(image_url)
        width, height = image.size

        prediction = pipe(image, generator=generator, **pipe_kwargs).prediction

        prediction_slice = prediction[0, -3:, -3:, -1].flatten()

        if pipe_kwargs.get("match_input_resolution", True):
            self.assertEqual(prediction.shape, (2, height, width, 3), "Unexpected output resolution")
        else:
            self.assertTrue(prediction.shape[0] == 2 and prediction.shape[3] == 3, "Unexpected output dimensions")
            self.assertEqual(
                max(prediction.shape[1:3]),
                pipe_kwargs.get("processing_resolution", 768),
                "Unexpected output resolution",
            )

        msg = f"{prediction_slice}"
        self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol), msg)
        # self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol))

    def test_marigold_intrinsics_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=False,
            device="cpu",
            generator_seed=0,
            expected_slice=np.array([0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162]),
            num_inference_steps=1,
            processing_resolution=32,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f32_accelerator_G0_S1_P768_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=False,
            device=torch_device,
            generator_seed=0,
            expected_slice=np.array([0.62127, 0.61906, 0.61687, 0.61946, 0.61903, 0.61961, 0.61808, 0.62099, 0.62894]),
            num_inference_steps=1,
            processing_resolution=768,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=True,
            device=torch_device,
            generator_seed=0,
            expected_slice=np.array([0.62109, 0.61914, 0.61719, 0.61963, 0.61914, 0.61963, 0.61816, 0.62109, 0.62891]),
            num_inference_steps=1,
            processing_resolution=768,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f16_accelerator_G2024_S1_P768_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=True,
            device=torch_device,
            generator_seed=2024,
            expected_slice=np.array([0.64111, 0.63916, 0.63623, 0.63965, 0.63916, 0.63965, 0.6377, 0.64062, 0.64941]),
            num_inference_steps=1,
            processing_resolution=768,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f16_accelerator_G0_S2_P768_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=True,
            device=torch_device,
            generator_seed=0,
            expected_slice=np.array([0.60254, 0.60059, 0.59961, 0.60156, 0.60107, 0.60205, 0.60254, 0.60449, 0.61133]),
            num_inference_steps=2,
            processing_resolution=768,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P512_E1_B1_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=True,
            device=torch_device,
            generator_seed=0,
            expected_slice=np.array([0.64551, 0.64453, 0.64404, 0.64502, 0.64844, 0.65039, 0.64502, 0.65039, 0.65332]),
            num_inference_steps=1,
            processing_resolution=512,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E3_B1_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=True,
            device=torch_device,
            generator_seed=0,
            expected_slice=np.array([0.61572, 0.61377, 0.61182, 0.61426, 0.61377, 0.61426, 0.61279, 0.61572, 0.62354]),
            num_inference_steps=1,
            processing_resolution=768,
            ensemble_size=3,
            ensembling_kwargs={"reduction": "mean"},
            batch_size=1,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E4_B2_M1(self):
        self._test_marigold_intrinsics(
            is_fp16=True,
            device=torch_device,
            generator_seed=0,
            expected_slice=np.array([0.61914, 0.6167, 0.61475, 0.61719, 0.61719, 0.61768, 0.61572, 0.61914, 0.62695]),
            num_inference_steps=1,
            processing_resolution=768,
            ensemble_size=4,
            ensembling_kwargs={"reduction": "mean"},
            batch_size=2,
            match_input_resolution=True,
        )

    def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P512_E1_B1_M0(self):
        self._test_marigold_intrinsics(
            is_fp16=True,
            device=torch_device,
            generator_seed=0,
            expected_slice=np.array([0.65332, 0.64697, 0.64648, 0.64844, 0.64697, 0.64111, 0.64941, 0.64209, 0.65332]),
            num_inference_steps=1,
            processing_resolution=512,
            ensemble_size=1,
            batch_size=1,
            match_input_resolution=False,
        )