File size: 32,145 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# IP-Adapter

[IP-Adapter](https://huggingface.co/papers/2308.06721) is a lightweight adapter designed to integrate image-based guidance with text-to-image diffusion models. The adapter uses an image encoder to extract image features that are passed to the newly added cross-attention layers in the UNet and fine-tuned. The original UNet model and the existing cross-attention layers corresponding to text features is frozen. Decoupling the cross-attention for image and text features enables more fine-grained and controllable generation.

IP-Adapter files are typically ~100MBs because they only contain the image embeddings. This means you need to load a model first, and then load the IP-Adapter with [`~loaders.IPAdapterMixin.load_ip_adapter`].

> [!TIP]
> IP-Adapters are available to many models such as [Flux](../api/pipelines/flux#ip-adapter) and [Stable Diffusion 3](../api/pipelines/stable_diffusion/stable_diffusion_3), and more. The examples in this guide use Stable Diffusion and Stable Diffusion XL.

Use the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] parameter to scale the influence of the IP-Adapter during generation. A value of `1.0` means the model is only conditioned on the image prompt, and `0.5` typically produces balanced results between the text and image prompt.

```py
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image

pipeline = AutoPipelineForText2Image.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.8)
```

Pass an image to `ip_adapter_image` along with a text prompt to generate an image.

```py
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png")
pipeline(
    prompt="a polar bear sitting in a chair drinking a milkshake",
    ip_adapter_image=image,
    negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
).images[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png" width="400" alt="IP-Adapter image"/>
    <figcaption style="text-align: center;">IP-Adapter image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner_2.png" width="400" alt="generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

Take a look at the examples below to learn how to use IP-Adapter for other tasks.

<hfoptions id="usage">
<hfoption id="image-to-image">

```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image

pipeline = AutoPipelineForImage2Image.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.8)

image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png")
ip_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png")
pipeline(
    prompt="best quality, high quality",
    image=image,
    ip_adapter_image=ip_image,
    strength=0.5,
).images[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png" width="300" alt="input image"/>
    <figcaption style="text-align: center;">input image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png" width="300" alt="IP-Adapter image"/>
    <figcaption style="text-align: center;">IP-Adapter image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_3.png" width="300" alt="generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

</hfoption>
<hfoption id="inpainting">

```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image

pipeline = AutoPipelineForImage2Image.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.6)

mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_mask.png")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png")
ip_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png")
pipeline(
    prompt="a cute gummy bear waving",
    image=image,
    mask_image=mask_image,
    ip_adapter_image=ip_image,
).images[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png" width="300" alt="input image"/>
    <figcaption style="text-align: center;">input image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png" width="300" alt="IP-Adapter image"/>
    <figcaption style="text-align: center;">IP-Adapter image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png" width="300" alt="generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

</hfoption>
<hfoption id="video">

The [`~DiffusionPipeline.enable_model_cpu_offload`] method is useful for reducing memory and it should be enabled **after** the IP-Adapter is loaded. Otherwise, the IP-Adapter's image encoder is also offloaded to the CPU and returns an error.

```py
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from diffusers.utils import load_image

adapter = MotionAdapter.from_pretrained(
  "guoyww/animatediff-motion-adapter-v1-5-2",
  torch_dtype=torch.float16
)
pipeline = AnimateDiffPipeline.from_pretrained(
  "emilianJR/epiCRealism",
  motion_adapter=adapter,
  torch_dtype=torch.float16
)
scheduler = DDIMScheduler.from_pretrained(
    "emilianJR/epiCRealism",
    subfolder="scheduler",
    clip_sample=False,
    timestep_spacing="linspace",
    beta_schedule="linear",
    steps_offset=1,
)
pipeline.scheduler = scheduler
pipeline.enable_vae_slicing()
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.enable_model_cpu_offload()

ip_adapter_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png")
pipeline(
    prompt="A cute gummy bear waving",
    negative_prompt="bad quality, worse quality, low resolution",
    ip_adapter_image=ip_adapter_image,
    num_frames=16,
    guidance_scale=7.5,
    num_inference_steps=50,
).frames[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png" width="400" alt="IP-Adapter image"/>
    <figcaption style="text-align: center;">IP-Adapter image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gummy_bear.gif" width="400" alt="generated video"/>
    <figcaption style="text-align: center;">generated video</figcaption>
  </figure>
</div>

</hfoption>
</hfoptions>

## Model variants

There are two variants of IP-Adapter, Plus and FaceID. The Plus variant uses patch embeddings and the ViT-H image encoder. FaceID variant uses face embeddings generated from InsightFace.

<hfoptions id="ipadapter-variants">
<hfoption id="IP-Adapter Plus">

```py
import torch
from transformers import CLIPVisionModelWithProjection, AutoPipelineForText2Image

image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    "h94/IP-Adapter",
    subfolder="models/image_encoder",
    torch_dtype=torch.float16
)

pipeline = AutoPipelineForText2Image.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    image_encoder=image_encoder,
    torch_dtype=torch.float16
).to("cuda")

pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  weight_name="ip-adapter-plus_sdxl_vit-h.safetensors"
)
```

</hfoption>
<hfoption id="IP-Adapter FaceID">

```py
import torch
from transformers import AutoPipelineForText2Image

pipeline = AutoPipelineForText2Image.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16
).to("cuda")

pipeline.load_ip_adapter(
  "h94/IP-Adapter-FaceID",
  subfolder=None,
  weight_name="ip-adapter-faceid_sdxl.bin",
  image_encoder_folder=None
)
```

To use a IP-Adapter FaceID Plus model, load the CLIP image encoder as well as [`~transformers.CLIPVisionModelWithProjection`].

```py
from transformers import AutoPipelineForText2Image, CLIPVisionModelWithProjection

image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    "laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
    torch_dtype=torch.float16,
)

pipeline = AutoPipelineForText2Image.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    image_encoder=image_encoder,
    torch_dtype=torch.float16
).to("cuda")

pipeline.load_ip_adapter(
  "h94/IP-Adapter-FaceID",
  subfolder=None,
  weight_name="ip-adapter-faceid-plus_sd15.bin"
)
```

</hfoption>
</hfoptions>

## Image embeddings

The `prepare_ip_adapter_image_embeds` generates image embeddings you can reuse if you're running the pipeline multiple times because you have more than one image. Loading and encoding multiple images each time you use the pipeline can be inefficient. Precomputing the image embeddings ahead of time, saving them to disk, and loading them when you need them is more efficient.

```py
import torch
from diffusers import AutoPipelineForText2Image

pipeline = AutoPipelineForImage2Image.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  torch_dtype=torch.float16
).to("cuda")

image_embeds = pipeline.prepare_ip_adapter_image_embeds(
    ip_adapter_image=image,
    ip_adapter_image_embeds=None,
    device="cuda",
    num_images_per_prompt=1,
    do_classifier_free_guidance=True,
)

torch.save(image_embeds, "image_embeds.ipadpt")
```

Reload the image embeddings by passing them to the `ip_adapter_image_embeds` parameter. Set `image_encoder_folder` to `None` because you don't need the image encoder anymore to generate the image embeddings.

> [!TIP]
> You can also load image embeddings from other sources such as ComfyUI.

```py
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  image_encoder_folder=None,
  weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.8)
image_embeds = torch.load("image_embeds.ipadpt")
pipeline(
    prompt="a polar bear sitting in a chair drinking a milkshake",
    ip_adapter_image_embeds=image_embeds,
    negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
    num_inference_steps=100,
    generator=generator,
).images[0]
```

## Masking

Binary masking enables assigning an IP-Adapter image to a specific area of the output image, making it useful for composing multiple IP-Adapter images. Each IP-Adapter image requires a binary mask.

Load the [`~image_processor.IPAdapterMaskProcessor`] to preprocess the image masks. For the best results, provide the output `height` and `width` to ensure masks with different aspect ratios are appropriately sized. If the input masks already match the aspect ratio of the generated image, you don't need to set the `height` and `width`.

```py
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.image_processor import IPAdapterMaskProcessor
from diffusers.utils import load_image

pipeline = AutoPipelineForImage2Image.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  torch_dtype=torch.float16
).to("cuda")

mask1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask1.png")
mask2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask2.png")

processor = IPAdapterMaskProcessor()
masks = processor.preprocess([mask1, mask2], height=1024, width=1024)
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask1.png" width="200" alt="mask 1"/>
    <figcaption style="text-align: center;">mask 1</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask2.png" width="200" alt="mask 2"/>
    <figcaption style="text-align: center;">mask 2</figcaption>
  </figure>
</div>

Provide both the IP-Adapter images and their scales as a list. Pass the preprocessed masks to `cross_attention_kwargs` in the pipeline.

```py
face_image1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl1.png")
face_image2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png")

pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([[0.7, 0.7]])

ip_images = [[face_image1, face_image2]]
masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]

pipeline(
  prompt="2 girls",
  ip_adapter_image=ip_images,
  negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
  cross_attention_kwargs={"ip_adapter_masks": masks}
).images[0]
```

<div style="display: flex; flex-direction: column; gap: 10px;">
  <div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
    <figure>
      <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl1.png" width="400" alt="IP-Adapter image 1"/>
      <figcaption style="text-align: center;">IP-Adapter image 1</figcaption>
    </figure>
    <figure>
      <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl2.png" width="400" alt="IP-Adapter image 2"/>
      <figcaption style="text-align: center;">IP-Adapter image 2</figcaption>
    </figure>
  </div>
  <div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
    <figure>
      <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_attention_mask_result_seed_0.png" width="400" alt="Generated image with mask"/>
      <figcaption style="text-align: center;">generated with mask</figcaption>
    </figure>
    <figure>
      <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_no_attention_mask_result_seed_0.png" width="400" alt="Generated image without mask"/>
      <figcaption style="text-align: center;">generated without mask</figcaption>
    </figure>
  </div>
</div>

## Applications

The section below covers some popular applications of IP-Adapter.

### Face models

Face generation and preserving its details can be challenging. To help generate more accurate faces, there are checkpoints specifically conditioned on images of cropped faces. You can find the face models in the [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter) repository or the [h94/IP-Adapter-FaceID](https://huggingface.co/h94/IP-Adapter-FaceID) repository. The FaceID checkpoints use the FaceID embeddings from [InsightFace](https://github.com/deepinsight/insightface) instead of CLIP image embeddings.

We recommend using the [`DDIMScheduler`] or [`EulerDiscreteScheduler`] for face models.

<hfoptions id="usage">
<hfoption id="h94/IP-Adapter">

```py
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image

pipeline = StableDiffusionPipeline.from_pretrained(
  "stable-diffusion-v1-5/stable-diffusion-v1-5",
  torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="models", 
  weight_name="ip-adapter-full-face_sd15.bin"
)

pipeline.set_ip_adapter_scale(0.5)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein_base.png")

pipeline(
    prompt="A photo of Einstein as a chef, wearing an apron, cooking in a French restaurant",
    ip_adapter_image=image,
    negative_prompt="lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=100,
).images[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein_base.png" width="400" alt="IP-Adapter image"/>
    <figcaption style="text-align: center;">IP-Adapter image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein.png" width="400" alt="generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

</hfoption>
<hfoption id="h94/IP-Adapter-FaceID">

For FaceID models, extract the face embeddings and pass them as a list of tensors to `ip_adapter_image_embeds`.

```py
# pip install insightface
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
from insightface.app import FaceAnalysis

pipeline = StableDiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
  "h94/IP-Adapter-FaceID",
  subfolder=None,
  weight_name="ip-adapter-faceid_sd15.bin",
  image_encoder_folder=None
)
pipeline.set_ip_adapter_scale(0.6)

image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl1.png")

ref_images_embeds = []
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
image = torch.from_numpy(faces[0].normed_embedding)
ref_images_embeds.append(image.unsqueeze(0))
ref_images_embeds = torch.stack(ref_images_embeds, dim=0).unsqueeze(0)
neg_ref_images_embeds = torch.zeros_like(ref_images_embeds)
id_embeds = torch.cat([neg_ref_images_embeds, ref_images_embeds]).to(dtype=torch.float16, device="cuda")

pipeline(
    prompt="A photo of a girl",
    ip_adapter_image_embeds=[id_embeds],
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
).images[0]
```

The IP-Adapter FaceID Plus and Plus v2 models require CLIP image embeddings. Prepare the face embeddings and then extract and pass the CLIP embeddings to the hidden image projection layers.

```py
clip_embeds = pipeline.prepare_ip_adapter_image_embeds(
  [ip_adapter_images], None, torch.device("cuda"), num_images, True)[0]

pipeline.unet.encoder_hid_proj.image_projection_layers[0].clip_embeds = clip_embeds.to(dtype=torch.float16)
# set to True if using IP-Adapter FaceID Plus v2
pipeline.unet.encoder_hid_proj.image_projection_layers[0].shortcut = False
```

</hfoption>
</hfoptions>

### Multiple IP-Adapters

Combine multiple IP-Adapters to generate images in more diverse styles. For example, you can use IP-Adapter Face to generate consistent faces and characters and IP-Adapter Plus to generate those faces in specific styles.

Load an image encoder with [`~transformers.CLIPVisionModelWithProjection`].

```py
import torch
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
from diffusers.utils import load_image

image_encoder = CLIPVisionModelWithProjection.from_pretrained(
    "h94/IP-Adapter",
    subfolder="models/image_encoder",
    torch_dtype=torch.float16,
)
```

Load a base model, scheduler and the following IP-Adapters.

- [ip-adapter-plus_sdxl_vit-h](https://huggingface.co/h94/IP-Adapter#ip-adapter-for-sdxl-10) uses patch embeddings and a ViT-H image encoder
- [ip-adapter-plus-face_sdxl_vit-h](https://huggingface.co/h94/IP-Adapter#ip-adapter-for-sdxl-10) uses patch embeddings and a ViT-H image encoder but it is conditioned on images of cropped faces

```py
pipeline = AutoPipelineForText2Image.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    image_encoder=image_encoder,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([0.7, 0.3])
# enable_model_cpu_offload to reduce memory usage
pipeline.enable_model_cpu_offload()
```

Load an image and a folder containing images of a certain style to apply.

```py
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png")
style_folder = "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy"
style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png" width="400" alt="Face image"/>
    <figcaption style="text-align: center;">face image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_style_grid.png" width="400" alt="Style images"/>
    <figcaption style="text-align: center;">style images</figcaption>
  </figure>
</div>

Pass style and face images as a list to `ip_adapter_image`.

```py
generator = torch.Generator(device="cpu").manual_seed(0)

pipeline(
    prompt="wonderwoman",
    ip_adapter_image=[style_images, face_image],
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
).images[0]
```

<div style="display: flex; justify-content: center;">
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_multi_out.png" width="400" alt="Generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

### Instant generation

[Latent Consistency Models (LCM)](../api/pipelines/latent_consistency_models) can generate images 4 steps or less, unlike other diffusion models which require a lot more steps, making it feel "instantaneous". IP-Adapters are compatible with LCM models to instantly generate images.

Load the IP-Adapter weights and load the LoRA weights with [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].

```py
import torch
from diffusers import DiffusionPipeline, LCMScheduler
from diffusers.utils import load_image

pipeline = DiffusionPipeline.from_pretrained(
  "sd-dreambooth-library/herge-style",
  torch_dtype=torch.float16
)

pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="models",
  weight_name="ip-adapter_sd15.bin"
)
pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
# enable_model_cpu_offload to reduce memory usage
pipeline.enable_model_cpu_offload()
```

Try using a lower IP-Adapter scale to condition generation more on the style you want to apply and remember to use the special token in your prompt to trigger its generation.

```py
pipeline.set_ip_adapter_scale(0.4)

prompt = "herge_style woman in armor, best quality, high quality"

ip_adapter_image = load_image("https://user-images.githubusercontent.com/24734142/266492875-2d50d223-8475-44f0-a7c6-08b51cb53572.png")
pipeline(
    prompt=prompt,
    ip_adapter_image=ip_adapter_image,
    num_inference_steps=4,
    guidance_scale=1,
).images[0]
```

<div style="display: flex; justify-content: center;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_herge.png" width="400" alt="Generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

### Structural control

For structural control, combine IP-Adapter with [ControlNet](../api/pipelines/controlnet) conditioned on depth maps, edge maps, pose estimations, and more.

The example below loads a [`ControlNetModel`] checkpoint conditioned on depth maps and combines it with a IP-Adapter.

```py
import torch
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

controlnet = ControlNetModel.from_pretrained(
  "lllyasviel/control_v11f1p_sd15_depth",
  torch_dtype=torch.float16
)

pipeline = StableDiffusionControlNetPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    controlnet=controlnet,
    torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="models",
  weight_name="ip-adapter_sd15.bin"
)
```

Pass the depth map and IP-Adapter image to the pipeline.

```py
pipeline(
  prompt="best quality, high quality",
  image=depth_map,
  ip_adapter_image=ip_adapter_image,
  negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
).images[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/statue.png" width="300" alt="IP-Adapter image"/>
    <figcaption style="text-align: center;">IP-Adapter image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/depth.png" width="300" alt="Depth map"/>
    <figcaption style="text-align: center;">depth map</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ipa-controlnet-out.png" width="300" alt="Generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

### Style and layout control

For style and layout control, combine IP-Adapter with [InstantStyle](https://huggingface.co/papers/2404.02733). InstantStyle separates *style* (color, texture, overall feel) and *content* from each other. It only applies the style in style-specific blocks of the model to prevent it from distorting other areas of an image. This generates images with stronger and more consistent styles and better control over the layout.

The IP-Adapter is only activated for specific parts of the model. Use the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] method to scale the influence of the IP-Adapter in different layers. The example below activates the IP-Adapter in the second layer of the models down `block_2` and up `block_0`. Down `block_2` is where the IP-Adapter injects layout information and up `block_0` is where style is injected.

```py
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image

pipeline = AutoPipelineForText2Image.from_pretrained(
  "stabilityai/stable-diffusion-xl-base-1.0",
  torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
  "h94/IP-Adapter",
  subfolder="sdxl_models",
  weight_name="ip-adapter_sdxl.bin"
)

scale = {
    "down": {"block_2": [0.0, 1.0]},
    "up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
```

Load the style image and generate an image.

```py
style_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")

pipeline(
    prompt="a cat, masterpiece, best quality, high quality",
    ip_adapter_image=style_image,
    negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
    guidance_scale=5,
).images[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" width="400" alt="Style image"/>
    <figcaption style="text-align: center;">style image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_layout.png" width="400" alt="Generated image"/>
    <figcaption style="text-align: center;">generated image</figcaption>
  </figure>
</div>

You can also insert the IP-Adapter in all the model layers. This tends to generate images that focus more on the image prompt and may reduce the diversity of generated images. Only activate the IP-Adapter in up `block_0` or the style layer.

> [!TIP]
> You don't need to specify all the layers in the `scale` dictionary. Layers not included are set to 0, which means the IP-Adapter is disabled.

```py
scale = {
    "up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)

pipeline(
    prompt="a cat, masterpiece, best quality, high quality",
    ip_adapter_image=style_image,
    negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
    guidance_scale=5,
).images[0]
```

<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_only.png" width="400" alt="Generated image (style only)"/>
    <figcaption style="text-align: center;">style-layer generated image</figcaption>
  </figure>
  <figure>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_ip_adapter.png" width="400" alt="Generated image (IP-Adapter only)"/>
    <figcaption style="text-align: center;">all layers generated image</figcaption>
  </figure>
</div>