Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,795 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from typing import Any, Dict, Optional, Tuple
import torch
from ..utils.logging import get_logger
logger = get_logger(__name__) # pylint: disable=invalid-name
class ModelHook:
r"""
A hook that contains callbacks to be executed just before and after the forward method of a model.
"""
_is_stateful = False
def __init__(self):
self.fn_ref: "HookFunctionReference" = None
def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
r"""
Hook that is executed when a model is initialized.
Args:
module (`torch.nn.Module`):
The module attached to this hook.
"""
return module
def deinitalize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
r"""
Hook that is executed when a model is deinitialized.
Args:
module (`torch.nn.Module`):
The module attached to this hook.
"""
return module
def pre_forward(self, module: torch.nn.Module, *args, **kwargs) -> Tuple[Tuple[Any], Dict[str, Any]]:
r"""
Hook that is executed just before the forward method of the model.
Args:
module (`torch.nn.Module`):
The module whose forward pass will be executed just after this event.
args (`Tuple[Any]`):
The positional arguments passed to the module.
kwargs (`Dict[Str, Any]`):
The keyword arguments passed to the module.
Returns:
`Tuple[Tuple[Any], Dict[Str, Any]]`:
A tuple with the treated `args` and `kwargs`.
"""
return args, kwargs
def post_forward(self, module: torch.nn.Module, output: Any) -> Any:
r"""
Hook that is executed just after the forward method of the model.
Args:
module (`torch.nn.Module`):
The module whose forward pass been executed just before this event.
output (`Any`):
The output of the module.
Returns:
`Any`: The processed `output`.
"""
return output
def detach_hook(self, module: torch.nn.Module) -> torch.nn.Module:
r"""
Hook that is executed when the hook is detached from a module.
Args:
module (`torch.nn.Module`):
The module detached from this hook.
"""
return module
def reset_state(self, module: torch.nn.Module):
if self._is_stateful:
raise NotImplementedError("This hook is stateful and needs to implement the `reset_state` method.")
return module
class HookFunctionReference:
def __init__(self) -> None:
"""A container class that maintains mutable references to forward pass functions in a hook chain.
Its mutable nature allows the hook system to modify the execution chain dynamically without rebuilding the
entire forward pass structure.
Attributes:
pre_forward: A callable that processes inputs before the main forward pass.
post_forward: A callable that processes outputs after the main forward pass.
forward: The current forward function in the hook chain.
original_forward: The original forward function, stored when a hook provides a custom new_forward.
The class enables hook removal by allowing updates to the forward chain through reference modification rather
than requiring reconstruction of the entire chain. When a hook is removed, only the relevant references need to
be updated, preserving the execution order of the remaining hooks.
"""
self.pre_forward = None
self.post_forward = None
self.forward = None
self.original_forward = None
class HookRegistry:
def __init__(self, module_ref: torch.nn.Module) -> None:
super().__init__()
self.hooks: Dict[str, ModelHook] = {}
self._module_ref = module_ref
self._hook_order = []
self._fn_refs = []
def register_hook(self, hook: ModelHook, name: str) -> None:
if name in self.hooks.keys():
raise ValueError(
f"Hook with name {name} already exists in the registry. Please use a different name or "
f"first remove the existing hook and then add a new one."
)
self._module_ref = hook.initialize_hook(self._module_ref)
def create_new_forward(function_reference: HookFunctionReference):
def new_forward(module, *args, **kwargs):
args, kwargs = function_reference.pre_forward(module, *args, **kwargs)
output = function_reference.forward(*args, **kwargs)
return function_reference.post_forward(module, output)
return new_forward
forward = self._module_ref.forward
fn_ref = HookFunctionReference()
fn_ref.pre_forward = hook.pre_forward
fn_ref.post_forward = hook.post_forward
fn_ref.forward = forward
if hasattr(hook, "new_forward"):
fn_ref.original_forward = forward
fn_ref.forward = functools.update_wrapper(
functools.partial(hook.new_forward, self._module_ref), hook.new_forward
)
rewritten_forward = create_new_forward(fn_ref)
self._module_ref.forward = functools.update_wrapper(
functools.partial(rewritten_forward, self._module_ref), rewritten_forward
)
hook.fn_ref = fn_ref
self.hooks[name] = hook
self._hook_order.append(name)
self._fn_refs.append(fn_ref)
def get_hook(self, name: str) -> Optional[ModelHook]:
return self.hooks.get(name, None)
def remove_hook(self, name: str, recurse: bool = True) -> None:
if name in self.hooks.keys():
num_hooks = len(self._hook_order)
hook = self.hooks[name]
index = self._hook_order.index(name)
fn_ref = self._fn_refs[index]
old_forward = fn_ref.forward
if fn_ref.original_forward is not None:
old_forward = fn_ref.original_forward
if index == num_hooks - 1:
self._module_ref.forward = old_forward
else:
self._fn_refs[index + 1].forward = old_forward
self._module_ref = hook.deinitalize_hook(self._module_ref)
del self.hooks[name]
self._hook_order.pop(index)
self._fn_refs.pop(index)
if recurse:
for module_name, module in self._module_ref.named_modules():
if module_name == "":
continue
if hasattr(module, "_diffusers_hook"):
module._diffusers_hook.remove_hook(name, recurse=False)
def reset_stateful_hooks(self, recurse: bool = True) -> None:
for hook_name in reversed(self._hook_order):
hook = self.hooks[hook_name]
if hook._is_stateful:
hook.reset_state(self._module_ref)
if recurse:
for module_name, module in self._module_ref.named_modules():
if module_name == "":
continue
if hasattr(module, "_diffusers_hook"):
module._diffusers_hook.reset_stateful_hooks(recurse=False)
@classmethod
def check_if_exists_or_initialize(cls, module: torch.nn.Module) -> "HookRegistry":
if not hasattr(module, "_diffusers_hook"):
module._diffusers_hook = cls(module)
return module._diffusers_hook
def __repr__(self) -> str:
registry_repr = ""
for i, hook_name in enumerate(self._hook_order):
if self.hooks[hook_name].__class__.__repr__ is not object.__repr__:
hook_repr = self.hooks[hook_name].__repr__()
else:
hook_repr = self.hooks[hook_name].__class__.__name__
registry_repr += f" ({i}) {hook_name} - {hook_repr}"
if i < len(self._hook_order) - 1:
registry_repr += "\n"
return f"HookRegistry(\n{registry_repr}\n)"
|