File size: 13,943 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
<!--Copyright 2024 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# OmniGen

OmniGen is an image generation model. Unlike existing text-to-image models, OmniGen is a single model designed to handle a variety of tasks (e.g., text-to-image, image editing, controllable generation). It has the following features:
- Minimalist model architecture, consisting of only a VAE and a transformer module, for joint modeling of text and images.
- Support for multimodal inputs. It can process any text-image mixed data as instructions for image generation, rather than relying solely on text.

For more information, please refer to the [paper](https://huggingface.co/papers/2409.11340).
This guide will walk you through using OmniGen for various tasks and use cases.

## Load model checkpoints

Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method.

```python
import torch
from diffusers import OmniGenPipeline

pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1-diffusers", torch_dtype=torch.bfloat16)
```

## Text-to-image

For text-to-image, pass a text prompt. By default, OmniGen generates a 1024x1024 image. 
You can try setting the `height` and `width` parameters to generate images with different size.

```python
import torch
from diffusers import OmniGenPipeline

pipe = OmniGenPipeline.from_pretrained(
    "Shitao/OmniGen-v1-diffusers",
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

prompt = "Realistic photo. A young woman sits on a sofa, holding a book and facing the camera. She wears delicate silver hoop earrings adorned with tiny, sparkling diamonds that catch the light, with her long chestnut hair cascading over her shoulders. Her eyes are focused and gentle, framed by long, dark lashes. She is dressed in a cozy cream sweater, which complements her warm, inviting smile. Behind her, there is a table with a cup of water in a sleek, minimalist blue mug. The background is a serene indoor setting with soft natural light filtering through a window, adorned with tasteful art and flowers, creating a cozy and peaceful ambiance. 4K, HD."
image = pipe(
    prompt=prompt,
    height=1024,
    width=1024,
    guidance_scale=3,
    generator=torch.Generator(device="cpu").manual_seed(111),
).images[0]
image.save("output.png")
```

<div class="flex justify-center">
    <img src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/t2i_woman_with_book.png" alt="generated image"/>
</div>

## Image edit

OmniGen supports multimodal inputs. 
When the input includes an image, you need to add a placeholder `<img><|image_1|></img>` in the text prompt to represent the image. 
It is recommended to enable `use_input_image_size_as_output` to keep the edited image the same size as the original image.

```python
import torch
from diffusers import OmniGenPipeline
from diffusers.utils import load_image 

pipe = OmniGenPipeline.from_pretrained(
    "Shitao/OmniGen-v1-diffusers",
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

prompt="<img><|image_1|></img> Remove the woman's earrings. Replace the mug with a clear glass filled with sparkling iced cola."
input_images=[load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/t2i_woman_with_book.png")]
image = pipe(
    prompt=prompt, 
    input_images=input_images, 
    guidance_scale=2, 
    img_guidance_scale=1.6,
    use_input_image_size_as_output=True,
    generator=torch.Generator(device="cpu").manual_seed(222)
).images[0]
image.save("output.png")
```

<div class="flex flex-row gap-4">
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/t2i_woman_with_book.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
  </div>
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/edit.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">edited image</figcaption>
  </div>
</div>

OmniGen has some interesting features, such as visual reasoning, as shown in the example below.

```python
prompt="If the woman is thirsty, what should she take? Find it in the image and highlight it in blue. <img><|image_1|></img>"
input_images=[load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/edit.png")]
image = pipe(
    prompt=prompt, 
    input_images=input_images, 
    guidance_scale=2, 
    img_guidance_scale=1.6,
    use_input_image_size_as_output=True,
    generator=torch.Generator(device="cpu").manual_seed(0)
).images[0]
image.save("output.png")
```

<div class="flex justify-center">
    <img src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/reasoning.png" alt="generated image"/>
</div>

## Controllable generation

OmniGen can handle several classic computer vision tasks. As shown below, OmniGen can detect human skeletons in input images, which can be used as control conditions to generate new images.

```python
import torch
from diffusers import OmniGenPipeline
from diffusers.utils import load_image 

pipe = OmniGenPipeline.from_pretrained(
    "Shitao/OmniGen-v1-diffusers",
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

prompt="Detect the skeleton of human in this image: <img><|image_1|></img>"
input_images=[load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/edit.png")]
image1 = pipe(
    prompt=prompt, 
    input_images=input_images, 
    guidance_scale=2, 
    img_guidance_scale=1.6,
    use_input_image_size_as_output=True,
    generator=torch.Generator(device="cpu").manual_seed(333)
).images[0]
image1.save("image1.png")

prompt="Generate a new photo using the following picture and text as conditions: <img><|image_1|></img>\n A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him."
input_images=[load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/skeletal.png")]
image2 = pipe(
    prompt=prompt, 
    input_images=input_images, 
    guidance_scale=2, 
    img_guidance_scale=1.6,
    use_input_image_size_as_output=True,
    generator=torch.Generator(device="cpu").manual_seed(333)
).images[0]
image2.save("image2.png")
```

<div class="flex flex-row gap-4">
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/edit.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption>
  </div>
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/skeletal.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">detected skeleton</figcaption>
  </div>
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/skeletal2img.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">skeleton to image</figcaption>
  </div>
</div>


OmniGen can also directly use relevant information from input images to generate new images.

```python
import torch
from diffusers import OmniGenPipeline
from diffusers.utils import load_image 

pipe = OmniGenPipeline.from_pretrained(
    "Shitao/OmniGen-v1-diffusers",
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

prompt="Following the pose of this image <img><|image_1|></img>, generate a new photo: A young boy is sitting on a sofa in the library, holding a book. His hair is neatly combed, and a faint smile plays on his lips, with a few freckles scattered across his cheeks. The library is quiet, with rows of shelves filled with books stretching out behind him."
input_images=[load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/edit.png")]
image = pipe(
    prompt=prompt, 
    input_images=input_images, 
    guidance_scale=2, 
    img_guidance_scale=1.6,
    use_input_image_size_as_output=True,
    generator=torch.Generator(device="cpu").manual_seed(0)
).images[0]
image.save("output.png")
```

<div class="flex flex-row gap-4">
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/same_pose.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
  </div>
</div>

## ID and object preserving

OmniGen can generate multiple images based on the people and objects in the input image and supports inputting multiple images simultaneously. 
Additionally, OmniGen can extract desired objects from an image containing multiple objects based on instructions.

```python
import torch
from diffusers import OmniGenPipeline
from diffusers.utils import load_image 

pipe = OmniGenPipeline.from_pretrained(
    "Shitao/OmniGen-v1-diffusers",
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

prompt="A man and a woman are sitting at a classroom desk. The man is the man with yellow hair in <img><|image_1|></img>. The woman is the woman on the left of <img><|image_2|></img>"
input_image_1 = load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/3.png")
input_image_2 = load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/4.png")
input_images=[input_image_1, input_image_2]
image = pipe(
    prompt=prompt, 
    input_images=input_images, 
    height=1024,
    width=1024,
    guidance_scale=2.5, 
    img_guidance_scale=1.6,
    generator=torch.Generator(device="cpu").manual_seed(666)
).images[0]
image.save("output.png")
```

<div class="flex flex-row gap-4">
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/3.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">input_image_1</figcaption>
  </div>
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/4.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">input_image_2</figcaption>
  </div>
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/id2.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
  </div>
</div>

```py
import torch
from diffusers import OmniGenPipeline
from diffusers.utils import load_image 

pipe = OmniGenPipeline.from_pretrained(
    "Shitao/OmniGen-v1-diffusers",
    torch_dtype=torch.bfloat16
)
pipe.to("cuda")

prompt="A woman is walking down the street, wearing a white long-sleeve blouse with lace details on the sleeves, paired with a blue pleated skirt. The woman is <img><|image_1|></img>. The long-sleeve blouse and a pleated skirt are <img><|image_2|></img>."
input_image_1 = load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/emma.jpeg")
input_image_2 = load_image("https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/dress.jpg")
input_images=[input_image_1, input_image_2]
image = pipe(
    prompt=prompt, 
    input_images=input_images, 
    height=1024,
    width=1024,
    guidance_scale=2.5, 
    img_guidance_scale=1.6,
    generator=torch.Generator(device="cpu").manual_seed(666)
).images[0]
image.save("output.png")
```

<div class="flex flex-row gap-4">
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/emma.jpeg"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">person image</figcaption>
  </div>
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/dress.jpg"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">clothe image</figcaption>
  </div>
  <div class="flex-1">
    <img class="rounded-xl" src="https://raw.githubusercontent.com/VectorSpaceLab/OmniGen/main/imgs/docs_img/tryon.png"/>
    <figcaption class="mt-2 text-center text-sm text-gray-500">generated image</figcaption>
  </div>
</div>

## Optimization when using multiple images 

For text-to-image task, OmniGen requires minimal memory and time costs (9GB memory and 31s for a 1024x1024 image on A800 GPU). 
However, when using input images, the computational cost increases. 

Here are some guidelines to help you reduce computational costs when using multiple images. The experiments are conducted on an A800 GPU with two input images.

Like other pipelines, you can reduce memory usage by offloading the model: `pipe.enable_model_cpu_offload()` or `pipe.enable_sequential_cpu_offload() `. 
In OmniGen, you can also decrease computational overhead by reducing the `max_input_image_size`. 
The memory consumption for different image sizes is shown in the table below:

| Method                    | Memory Usage |
|---------------------------|--------------|
| max_input_image_size=1024 | 40GB         |
| max_input_image_size=512  | 17GB         |
| max_input_image_size=256  | 14GB         |