File size: 31,793 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
# Copyright 2025 The NVIDIA Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Callable, Dict, List, Optional, Union

import numpy as np
import torch
from transformers import T5EncoderModel, T5TokenizerFast

from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...models import AutoencoderKLWan, CosmosTransformer3DModel
from ...schedulers import EDMEulerScheduler
from ...utils import is_cosmos_guardrail_available, is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import CosmosImagePipelineOutput


if is_cosmos_guardrail_available():
    from cosmos_guardrail import CosmosSafetyChecker
else:

    class CosmosSafetyChecker:
        def __init__(self, *args, **kwargs):
            raise ImportError(
                "`cosmos_guardrail` is not installed. Please install it to use the safety checker for Cosmos: `pip install cosmos_guardrail`."
            )


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```python
        >>> import torch
        >>> from diffusers import CosmosTextToImagePipeline

        >>> # Available checkpoints: nvidia/Cosmos-Predict2-2B-Text2Image, nvidia/Cosmos-Predict2-14B-Text2Image
        >>> model_id = "nvidia/Cosmos-Predict2-2B-Text2Image"
        >>> pipe = CosmosTextToImagePipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
        >>> pipe.to("cuda")

        >>> prompt = "A close-up shot captures a vibrant yellow scrubber vigorously working on a grimy plate, its bristles moving in circular motions to lift stubborn grease and food residue. The dish, once covered in remnants of a hearty meal, gradually reveals its original glossy surface. Suds form and bubble around the scrubber, creating a satisfying visual of cleanliness in progress. The sound of scrubbing fills the air, accompanied by the gentle clinking of the dish against the sink. As the scrubber continues its task, the dish transforms, gleaming under the bright kitchen lights, symbolizing the triumph of cleanliness over mess."
        >>> negative_prompt = "The video captures a series of frames showing ugly scenes, static with no motion, motion blur, over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and flickering. Overall, the video is of poor quality."

        >>> output = pipe(
        ...     prompt=prompt, negative_prompt=negative_prompt, generator=torch.Generator().manual_seed(1)
        ... ).images[0]
        >>> output.save("output.png")
        ```
"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class CosmosTextToImagePipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-image generation using [Cosmos](https://github.com/NVIDIA/Cosmos).

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        text_encoder ([`T5EncoderModel`]):
            Frozen text-encoder. Cosmos uses
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
            [t5-11b](https://huggingface.co/google-t5/t5-11b) variant.
        tokenizer (`T5TokenizerFast`):
            Tokenizer of class
            [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
        transformer ([`CosmosTransformer3DModel`]):
            Conditional Transformer to denoise the encoded image latents.
        scheduler ([`EDMEulerScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
        vae ([`AutoencoderKLWan`]):
            Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
    """

    model_cpu_offload_seq = "text_encoder->transformer->vae"
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
    # We mark safety_checker as optional here to get around some test failures, but it is not really optional
    _optional_components = ["safety_checker"]

    def __init__(
        self,
        text_encoder: T5EncoderModel,
        tokenizer: T5TokenizerFast,
        transformer: CosmosTransformer3DModel,
        vae: AutoencoderKLWan,
        scheduler: EDMEulerScheduler,
        safety_checker: CosmosSafetyChecker = None,
    ):
        super().__init__()

        # if safety_checker is None:
        #     safety_checker = CosmosSafetyChecker()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            transformer=transformer,
            scheduler=scheduler,
            safety_checker=safety_checker,
        )

        self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
        self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
        self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)

    # Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline._get_t5_prompt_embeds
    def _get_t5_prompt_embeds(
        self,
        prompt: Union[str, List[str]] = None,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype
        prompt = [prompt] if isinstance(prompt, str) else prompt

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            return_tensors="pt",
            return_length=True,
            return_offsets_mapping=False,
        )
        text_input_ids = text_inputs.input_ids
        prompt_attention_mask = text_inputs.attention_mask.bool().to(device)

        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        prompt_embeds = self.text_encoder(
            text_input_ids.to(device), attention_mask=prompt_attention_mask
        ).last_hidden_state
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        lengths = prompt_attention_mask.sum(dim=1).cpu()
        for i, length in enumerate(lengths):
            prompt_embeds[i, length:] = 0

        return prompt_embeds

    # Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline.encode_prompt with num_videos_per_prompt->num_images_per_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        do_classifier_free_guidance: bool = True,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        max_sequence_length: int = 512,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                Whether to use classifier free guidance or not.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            device: (`torch.device`, *optional*):
                torch device
            dtype: (`torch.dtype`, *optional*):
                torch dtype
        """
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype
            )

            # duplicate text embeddings for each generation per prompt, using mps friendly method
            _, seq_len, _ = prompt_embeds.shape
            prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
            prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )

            negative_prompt_embeds = self._get_t5_prompt_embeds(
                prompt=negative_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype
            )

            # duplicate text embeddings for each generation per prompt, using mps friendly method
            _, seq_len, _ = negative_prompt_embeds.shape
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        return prompt_embeds, negative_prompt_embeds

    def prepare_latents(
        self,
        batch_size: int,
        num_channels_latents: 16,
        height: int = 768,
        width: int = 1360,
        num_frames: int = 1,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if latents is not None:
            return latents.to(device=device, dtype=dtype) * self.scheduler.config.sigma_max

        num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
        latent_height = height // self.vae_scale_factor_spatial
        latent_width = width // self.vae_scale_factor_spatial
        shape = (batch_size, num_channels_latents, num_latent_frames, latent_height, latent_width)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        return latents * self.scheduler.config.sigma_max

    # Copied from diffusers.pipelines.cosmos.pipeline_cosmos_text2world.CosmosTextToWorldPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        height,
        width,
        prompt_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 16 != 0 or width % 16 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1.0

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def current_timestep(self):
        return self._current_timestep

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: int = 768,
        width: int = 1360,
        num_inference_steps: int = 35,
        guidance_scale: float = 7.0,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 512,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, defaults to `768`):
                The height in pixels of the generated image.
            width (`int`, defaults to `1360`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, defaults to `35`):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, defaults to `7.0`):
                Guidance scale as defined in [Classifier-Free Diffusion
                Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
                of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
                `guidance_scale > 1`.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
                provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`CosmosImagePipelineOutput`] instead of a plain tuple.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~CosmosImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`CosmosImagePipelineOutput`] is returned, otherwise a `tuple` is returned
                where the first element is a list with the generated images and the second element is a list of `bool`s
                indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
        """

        # if self.safety_checker is None:
        #     raise ValueError(
        #         f"You have disabled the safety checker for {self.__class__}. This is in violation of the "
        #         "[NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). "
        #         f"Please ensure that you are compliant with the license agreement."
        #     )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        num_frames = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, prompt_embeds, callback_on_step_end_tensor_inputs)

        self._guidance_scale = guidance_scale
        self._current_timestep = None
        self._interrupt = False

        device = self._execution_device

        if self.safety_checker is not None:
            self.safety_checker.to(device)
            if prompt is not None:
                prompt_list = [prompt] if isinstance(prompt, str) else prompt
                for p in prompt_list:
                    if not self.safety_checker.check_text_safety(p):
                        raise ValueError(
                            f"Cosmos Guardrail detected unsafe text in the prompt: {p}. Please ensure that the "
                            f"prompt abides by the NVIDIA Open Model License Agreement."
                        )
            self.safety_checker.to("cpu")

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Encode input prompt
        (
            prompt_embeds,
            negative_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            num_images_per_prompt=num_images_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            device=device,
            max_sequence_length=max_sequence_length,
        )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device)

        # 5. Prepare latent variables
        transformer_dtype = self.transformer.dtype
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            num_frames,
            torch.float32,
            device,
            generator,
            latents,
        )

        padding_mask = latents.new_zeros(1, 1, height, width, dtype=transformer_dtype)

        # 6. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                self._current_timestep = t
                timestep = t.expand(latents.shape[0]).to(transformer_dtype)
                current_sigma = self.scheduler.sigmas[i]

                latent_model_input = latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                latent_model_input = latent_model_input.to(transformer_dtype)

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    padding_mask=padding_mask,
                    return_dict=False,
                )[0]
                noise_pred = self.scheduler.precondition_outputs(latents, noise_pred, current_sigma)

                if self.do_classifier_free_guidance:
                    noise_pred_uncond = self.transformer(
                        hidden_states=latent_model_input,
                        timestep=timestep,
                        encoder_hidden_states=negative_prompt_embeds,
                        padding_mask=padding_mask,
                        return_dict=False,
                    )[0]
                    noise_pred_uncond = self.scheduler.precondition_outputs(latents, noise_pred_uncond, current_sigma)
                    noise_pred = noise_pred + self.guidance_scale * (noise_pred - noise_pred_uncond)

                latents = self.scheduler.step(
                    noise_pred, t, latents, pred_original_sample=noise_pred, return_dict=False
                )[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        self._current_timestep = None

        if not output_type == "latent":
            latents_mean = (
                torch.tensor(self.vae.config.latents_mean)
                .view(1, self.vae.config.z_dim, 1, 1, 1)
                .to(latents.device, latents.dtype)
            )
            latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
                latents.device, latents.dtype
            )
            latents = latents / latents_std / self.scheduler.config.sigma_data + latents_mean
            video = self.vae.decode(latents.to(self.vae.dtype), return_dict=False)[0]

            if self.safety_checker is not None:
                self.safety_checker.to(device)
                video = self.video_processor.postprocess_video(video, output_type="np")
                video = (video * 255).astype(np.uint8)
                video_batch = []
                for vid in video:
                    vid = self.safety_checker.check_video_safety(vid)
                    video_batch.append(vid)
                video = np.stack(video_batch).astype(np.float32) / 255.0 * 2 - 1
                video = torch.from_numpy(video).permute(0, 4, 1, 2, 3)
                video = self.video_processor.postprocess_video(video, output_type=output_type)
                self.safety_checker.to("cpu")
            else:
                video = self.video_processor.postprocess_video(video, output_type=output_type)
            image = [batch[0] for batch in video]
        else:
            image = latents[:, :, 0]

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return CosmosImagePipelineOutput(images=image)