File size: 12,820 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Getting Started: VAE Decode with Hybrid Inference

VAE decode is an essential component of diffusion models - turning latent representations into images or videos.

## Memory

These tables demonstrate the VRAM requirements for VAE decode with SD v1 and SD XL on different GPUs.

For the majority of these GPUs the memory usage % dictates other models (text encoders, UNet/Transformer) must be offloaded, or tiled decoding has to be used which increases time taken and impacts quality.

<details><summary>SD v1.5</summary>

| GPU | Resolution | Time (seconds) | Memory (%) | Tiled Time (secs) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.031 | 5.60% | 0.031 (0%) | 5.60% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.148 | 20.00% | 0.301 (+103%) | 5.60% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.05 | 8.40% | 0.050 (0%) | 8.40% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.224 | 30.00% | 0.356 (+59%) | 8.40% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.066 | 11.30% | 0.066 (0%) | 11.30% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.284 | 40.50% | 0.454 (+60%) | 11.40% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.062 | 5.20% | 0.062 (0%) | 5.20% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.253 | 18.50% | 0.464 (+83%) | 5.20% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.07 | 12.80% | 0.070 (0%) | 12.80% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.286 | 45.30% | 0.466 (+63%) | 12.90% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.102 | 15.90% | 0.102 (0%) | 15.90% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.421 | 56.30% | 0.746 (+77%) | 16.00% |

</details>

<details><summary>SDXL</summary>

| GPU | Resolution | Time (seconds) | Memory Consumed (%) | Tiled Time (seconds) | Tiled Memory (%) |
| --- | --- | --- | --- | --- | --- |
| NVIDIA GeForce RTX 4090 | 512x512 | 0.057 | 10.00% | 0.057 (0%) | 10.00% |
| NVIDIA GeForce RTX 4090 | 1024x1024 | 0.256 | 35.50% | 0.257 (+0.4%) | 35.50% |
| NVIDIA GeForce RTX 4080 | 512x512 | 0.092 | 15.00% | 0.092 (0%) | 15.00% |
| NVIDIA GeForce RTX 4080 | 1024x1024 | 0.406 | 53.30% | 0.406 (0%) | 53.30% |
| NVIDIA GeForce RTX 4070 Ti | 512x512 | 0.121 | 20.20% | 0.120 (-0.8%) | 20.20% |
| NVIDIA GeForce RTX 4070 Ti | 1024x1024 | 0.519 | 72.00% | 0.519 (0%) | 72.00% |
| NVIDIA GeForce RTX 3090 | 512x512 | 0.107 | 10.50% | 0.107 (0%) | 10.50% |
| NVIDIA GeForce RTX 3090 | 1024x1024 | 0.459 | 38.00% | 0.460 (+0.2%) | 38.00% |
| NVIDIA GeForce RTX 3080 | 512x512 | 0.121 | 25.60% | 0.121 (0%) | 25.60% |
| NVIDIA GeForce RTX 3080 | 1024x1024 | 0.524 | 93.00% | 0.524 (0%) | 93.00% |
| NVIDIA GeForce RTX 3070 | 512x512 | 0.183 | 31.80% | 0.183 (0%) | 31.80% |
| NVIDIA GeForce RTX 3070 | 1024x1024 | 0.794 | 96.40% | 0.794 (0%) | 96.40% |

</details>

## Available VAEs

|   | **Endpoint** | **Model** |
|:-:|:-----------:|:--------:|
| **Stable Diffusion v1** | [https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud](https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud) | [`stabilityai/sd-vae-ft-mse`](https://hf.co/stabilityai/sd-vae-ft-mse) |
| **Stable Diffusion XL** | [https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud](https://x2dmsqunjd6k9prw.us-east-1.aws.endpoints.huggingface.cloud) | [`madebyollin/sdxl-vae-fp16-fix`](https://hf.co/madebyollin/sdxl-vae-fp16-fix) |
| **Flux** | [https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud](https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud) | [`black-forest-labs/FLUX.1-schnell`](https://hf.co/black-forest-labs/FLUX.1-schnell) |
| **HunyuanVideo** | [https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud](https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud) | [`hunyuanvideo-community/HunyuanVideo`](https://hf.co/hunyuanvideo-community/HunyuanVideo) |


> [!TIP]
> Model support can be requested [here](https://github.com/huggingface/diffusers/issues/new?template=remote-vae-pilot-feedback.yml).


## Code

> [!TIP]
> Install `diffusers` from `main` to run the code: `pip install git+https://github.com/huggingface/diffusers@main`


A helper method simplifies interacting with Hybrid Inference.

```python
from diffusers.utils.remote_utils import remote_decode
```

### Basic example

Here, we show how to use the remote VAE on random tensors.

<details><summary>Code</summary>

```python
image = remote_decode(
    endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
    tensor=torch.randn([1, 4, 64, 64], dtype=torch.float16),
    scaling_factor=0.18215,
)
```

</details>

<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/output.png"/>
</figure>

Usage for Flux is slightly different. Flux latents are packed so we need to send the `height` and `width`.

<details><summary>Code</summary>

```python
image = remote_decode(
    endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
    tensor=torch.randn([1, 4096, 64], dtype=torch.float16),
    height=1024,
    width=1024,
    scaling_factor=0.3611,
    shift_factor=0.1159,
)
```

</details>

<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/flux_random_latent.png"/>
</figure>

Finally, an example for HunyuanVideo.

<details><summary>Code</summary>

```python
video = remote_decode(
    endpoint="https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/",
    tensor=torch.randn([1, 16, 3, 40, 64], dtype=torch.float16),
    output_type="mp4",
)
with open("video.mp4", "wb") as f:
    f.write(video)
```

</details>

<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
   <video
      alt="queue.mp4"
      autoplay loop autobuffer muted playsinline
    >
    <source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/video_1.mp4" type="video/mp4">
  </video>
</figure>


### Generation

But we want to use the VAE on an actual pipeline to get an actual image, not random noise. The example below shows how to do it with SD v1.5. 

<details><summary>Code</summary>

```python
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    torch_dtype=torch.float16,
    variant="fp16",
    vae=None,
).to("cuda")

prompt = "Strawberry ice cream, in a stylish modern glass, coconut, splashing milk cream and honey, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious"

latent = pipe(
    prompt=prompt,
    output_type="latent",
).images
image = remote_decode(
    endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
    tensor=latent,
    scaling_factor=0.18215,
)
image.save("test.jpg")
```

</details>

<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/test.jpg"/>
</figure>

Here’s another example with Flux.

<details><summary>Code</summary>

```python
from diffusers import FluxPipeline

pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell",
    torch_dtype=torch.bfloat16,
    vae=None,
).to("cuda")

prompt = "Strawberry ice cream, in a stylish modern glass, coconut, splashing milk cream and honey, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious"

latent = pipe(
    prompt=prompt,
    guidance_scale=0.0,
    num_inference_steps=4,
    output_type="latent",
).images
image = remote_decode(
    endpoint="https://whhx50ex1aryqvw6.us-east-1.aws.endpoints.huggingface.cloud/",
    tensor=latent,
    height=1024,
    width=1024,
    scaling_factor=0.3611,
    shift_factor=0.1159,
)
image.save("test.jpg")
```

</details>

<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/test_1.jpg"/>
</figure>

Here’s an example with HunyuanVideo.

<details><summary>Code</summary>

```python
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel

model_id = "hunyuanvideo-community/HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
    model_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(
    model_id, transformer=transformer, vae=None, torch_dtype=torch.float16
).to("cuda")

latent = pipe(
    prompt="A cat walks on the grass, realistic",
    height=320,
    width=512,
    num_frames=61,
    num_inference_steps=30,
    output_type="latent",
).frames

video = remote_decode(
    endpoint="https://o7ywnmrahorts457.us-east-1.aws.endpoints.huggingface.cloud/",
    tensor=latent,
    output_type="mp4",
)

if isinstance(video, bytes):
    with open("video.mp4", "wb") as f:
        f.write(video)
```

</details>

<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
   <video
      alt="queue.mp4"
      autoplay loop autobuffer muted playsinline
    >
    <source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/video.mp4" type="video/mp4">
  </video>
</figure>


### Queueing

One of the great benefits of using a remote VAE is that we can queue multiple generation requests. While the current latent is being processed for decoding, we can already queue another one. This helps improve concurrency. 


<details><summary>Code</summary>

```python
import queue
import threading
from IPython.display import display
from diffusers import StableDiffusionPipeline

def decode_worker(q: queue.Queue):
    while True:
        item = q.get()
        if item is None:
            break
        image = remote_decode(
            endpoint="https://q1bj3bpq6kzilnsu.us-east-1.aws.endpoints.huggingface.cloud/",
            tensor=item,
            scaling_factor=0.18215,
        )
        display(image)
        q.task_done()

q = queue.Queue()
thread = threading.Thread(target=decode_worker, args=(q,), daemon=True)
thread.start()

def decode(latent: torch.Tensor):
    q.put(latent)

prompts = [
    "Blueberry ice cream, in a stylish modern glass , ice cubes, nuts, mint leaves, splashing milk cream, in a gradient purple background, fluid motion, dynamic movement, cinematic lighting, Mysterious",
    "Lemonade in a glass, mint leaves, in an aqua and white background, flowers, ice cubes, halo, fluid motion, dynamic movement, soft lighting, digital painting, rule of thirds composition, Art by Greg rutkowski, Coby whitmore",
    "Comic book art, beautiful, vintage, pastel neon colors, extremely detailed pupils, delicate features, light on face, slight smile, Artgerm, Mary Blair, Edmund Dulac, long dark locks, bangs, glowing, fashionable style, fairytale ambience, hot pink.",
    "Masterpiece, vanilla cone ice cream garnished with chocolate syrup, crushed nuts, choco flakes, in a brown background, gold, cinematic lighting, Art by WLOP",
    "A bowl of milk, falling cornflakes, berries, blueberries, in a white background, soft lighting, intricate details, rule of thirds, octane render, volumetric lighting",
    "Cold Coffee with cream, crushed almonds, in a glass, choco flakes, ice cubes, wet, in a wooden background, cinematic lighting, hyper realistic painting, art by Carne Griffiths, octane render, volumetric lighting, fluid motion, dynamic movement, muted colors,",
]

pipe = StableDiffusionPipeline.from_pretrained(
    "Lykon/dreamshaper-8",
    torch_dtype=torch.float16,
    vae=None,
).to("cuda")

pipe.unet = pipe.unet.to(memory_format=torch.channels_last)
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

_ = pipe(
    prompt=prompts[0],
    output_type="latent",
)

for prompt in prompts:
    latent = pipe(
        prompt=prompt,
        output_type="latent",
    ).images
    decode(latent)

q.put(None)
thread.join()
```

</details>


<figure class="image flex flex-col items-center justify-center text-center m-0 w-full">
   <video
      alt="queue.mp4"
      autoplay loop autobuffer muted playsinline
    >
    <source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/remote_vae/queue.mp4" type="video/mp4">
  </video>
</figure>

## Integrations

* **[SD.Next](https://github.com/vladmandic/sdnext):** All-in-one UI with direct supports Hybrid Inference.
* **[ComfyUI-HFRemoteVae](https://github.com/kijai/ComfyUI-HFRemoteVae):** ComfyUI node for Hybrid Inference.