File size: 21,582 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from typing import Tuple, Union

import numpy as np
import PIL.Image
import torch

from diffusers.image_processor import VaeImageProcessor
from diffusers.utils.constants import (
    DECODE_ENDPOINT_FLUX,
    DECODE_ENDPOINT_HUNYUAN_VIDEO,
    DECODE_ENDPOINT_SD_V1,
    DECODE_ENDPOINT_SD_XL,
)
from diffusers.utils.remote_utils import (
    remote_decode,
)
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    slow,
    torch_all_close,
    torch_device,
)
from diffusers.video_processor import VideoProcessor


enable_full_determinism()


class RemoteAutoencoderKLMixin:
    shape: Tuple[int, ...] = None
    out_hw: Tuple[int, int] = None
    endpoint: str = None
    dtype: torch.dtype = None
    scaling_factor: float = None
    shift_factor: float = None
    processor_cls: Union[VaeImageProcessor, VideoProcessor] = None
    output_pil_slice: torch.Tensor = None
    output_pt_slice: torch.Tensor = None
    partial_postprocess_return_pt_slice: torch.Tensor = None
    return_pt_slice: torch.Tensor = None
    width: int = None
    height: int = None

    def get_dummy_inputs(self):
        inputs = {
            "endpoint": self.endpoint,
            "tensor": torch.randn(
                self.shape,
                device=torch_device,
                dtype=self.dtype,
                generator=torch.Generator(torch_device).manual_seed(13),
            ),
            "scaling_factor": self.scaling_factor,
            "shift_factor": self.shift_factor,
            "height": self.height,
            "width": self.width,
        }
        return inputs

    def test_no_scaling(self):
        inputs = self.get_dummy_inputs()
        if inputs["scaling_factor"] is not None:
            inputs["tensor"] = inputs["tensor"] / inputs["scaling_factor"]
            inputs["scaling_factor"] = None
        if inputs["shift_factor"] is not None:
            inputs["tensor"] = inputs["tensor"] + inputs["shift_factor"]
            inputs["shift_factor"] = None
        processor = self.processor_cls()
        output = remote_decode(
            output_type="pt",
            # required for now, will be removed in next update
            do_scaling=False,
            processor=processor,
            **inputs,
        )
        assert isinstance(output, PIL.Image.Image)
        self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}")
        self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}")
        self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}")
        output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten())
        # Increased tolerance for Flux Packed diff [1, 0, 1, 0, 0, 0, 0, 0, 0]
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1),
            f"{output_slice}",
        )

    def test_output_type_pt(self):
        inputs = self.get_dummy_inputs()
        processor = self.processor_cls()
        output = remote_decode(output_type="pt", processor=processor, **inputs)
        assert isinstance(output, PIL.Image.Image)
        self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}")
        self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}")
        self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}")
        output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten())
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1e-2), f"{output_slice}"
        )

    # output is visually the same, slice is flaky?
    def test_output_type_pil(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="pil", **inputs)
        self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}")
        self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}")
        self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}")

    def test_output_type_pil_image_format(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="pil", image_format="png", **inputs)
        self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}")
        self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}")
        self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}")
        self.assertEqual(output.format, "png", f"Expected image format `png`, got {output.format}")
        output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten())
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1e-2), f"{output_slice}"
        )

    def test_output_type_pt_partial_postprocess(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="pt", partial_postprocess=True, **inputs)
        self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}")
        self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}")
        self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}")
        output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten())
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1e-2), f"{output_slice}"
        )

    def test_output_type_pt_return_type_pt(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="pt", return_type="pt", **inputs)
        self.assertTrue(isinstance(output, torch.Tensor), f"Expected `torch.Tensor` output, got {type(output)}")
        self.assertEqual(
            output.shape[2], self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.shape[2]}"
        )
        self.assertEqual(
            output.shape[3], self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.shape[3]}"
        )
        output_slice = output[0, 0, -3:, -3:].flatten()
        self.assertTrue(
            torch_all_close(output_slice, self.return_pt_slice.to(output_slice.dtype), rtol=1e-3, atol=1e-3),
            f"{output_slice}",
        )

    def test_output_type_pt_partial_postprocess_return_type_pt(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="pt", partial_postprocess=True, return_type="pt", **inputs)
        self.assertTrue(isinstance(output, torch.Tensor), f"Expected `torch.Tensor` output, got {type(output)}")
        self.assertEqual(
            output.shape[1], self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.shape[1]}"
        )
        self.assertEqual(
            output.shape[2], self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.shape[2]}"
        )
        output_slice = output[0, -3:, -3:, 0].flatten().cpu()
        self.assertTrue(
            torch_all_close(output_slice, self.partial_postprocess_return_pt_slice.to(output_slice.dtype), rtol=1e-2),
            f"{output_slice}",
        )

    def test_do_scaling_deprecation(self):
        inputs = self.get_dummy_inputs()
        inputs.pop("scaling_factor", None)
        inputs.pop("shift_factor", None)
        with self.assertWarns(FutureWarning) as warning:
            _ = remote_decode(output_type="pt", partial_postprocess=True, **inputs)
            self.assertEqual(
                str(warning.warnings[0].message),
                "`do_scaling` is deprecated, pass `scaling_factor` and `shift_factor` if required.",
                str(warning.warnings[0].message),
            )

    def test_input_tensor_type_base64_deprecation(self):
        inputs = self.get_dummy_inputs()
        with self.assertWarns(FutureWarning) as warning:
            _ = remote_decode(output_type="pt", input_tensor_type="base64", partial_postprocess=True, **inputs)
            self.assertEqual(
                str(warning.warnings[0].message),
                "input_tensor_type='base64' is deprecated. Using `binary`.",
                str(warning.warnings[0].message),
            )

    def test_output_tensor_type_base64_deprecation(self):
        inputs = self.get_dummy_inputs()
        with self.assertWarns(FutureWarning) as warning:
            _ = remote_decode(output_type="pt", output_tensor_type="base64", partial_postprocess=True, **inputs)
            self.assertEqual(
                str(warning.warnings[0].message),
                "output_tensor_type='base64' is deprecated. Using `binary`.",
                str(warning.warnings[0].message),
            )


class RemoteAutoencoderKLHunyuanVideoMixin(RemoteAutoencoderKLMixin):
    def test_no_scaling(self):
        inputs = self.get_dummy_inputs()
        if inputs["scaling_factor"] is not None:
            inputs["tensor"] = inputs["tensor"] / inputs["scaling_factor"]
            inputs["scaling_factor"] = None
        if inputs["shift_factor"] is not None:
            inputs["tensor"] = inputs["tensor"] + inputs["shift_factor"]
            inputs["shift_factor"] = None
        processor = self.processor_cls()
        output = remote_decode(
            output_type="pt",
            # required for now, will be removed in next update
            do_scaling=False,
            processor=processor,
            **inputs,
        )
        self.assertTrue(
            isinstance(output, list) and isinstance(output[0], PIL.Image.Image),
            f"Expected `List[PIL.Image.Image]` output, got {type(output)}",
        )
        self.assertEqual(
            output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}"
        )
        self.assertEqual(
            output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}"
        )
        output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten())
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1),
            f"{output_slice}",
        )

    def test_output_type_pt(self):
        inputs = self.get_dummy_inputs()
        processor = self.processor_cls()
        output = remote_decode(output_type="pt", processor=processor, **inputs)
        self.assertTrue(
            isinstance(output, list) and isinstance(output[0], PIL.Image.Image),
            f"Expected `List[PIL.Image.Image]` output, got {type(output)}",
        )
        self.assertEqual(
            output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}"
        )
        self.assertEqual(
            output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}"
        )
        output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten())
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1),
            f"{output_slice}",
        )

    # output is visually the same, slice is flaky?
    def test_output_type_pil(self):
        inputs = self.get_dummy_inputs()
        processor = self.processor_cls()
        output = remote_decode(output_type="pil", processor=processor, **inputs)
        self.assertTrue(
            isinstance(output, list) and isinstance(output[0], PIL.Image.Image),
            f"Expected `List[PIL.Image.Image]` output, got {type(output)}",
        )
        self.assertEqual(
            output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}"
        )
        self.assertEqual(
            output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}"
        )

    def test_output_type_pil_image_format(self):
        inputs = self.get_dummy_inputs()
        processor = self.processor_cls()
        output = remote_decode(output_type="pil", processor=processor, image_format="png", **inputs)
        self.assertTrue(
            isinstance(output, list) and isinstance(output[0], PIL.Image.Image),
            f"Expected `List[PIL.Image.Image]` output, got {type(output)}",
        )
        self.assertEqual(
            output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}"
        )
        self.assertEqual(
            output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}"
        )
        output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten())
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1),
            f"{output_slice}",
        )

    def test_output_type_pt_partial_postprocess(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="pt", partial_postprocess=True, **inputs)
        self.assertTrue(
            isinstance(output, list) and isinstance(output[0], PIL.Image.Image),
            f"Expected `List[PIL.Image.Image]` output, got {type(output)}",
        )
        self.assertEqual(
            output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}"
        )
        self.assertEqual(
            output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}"
        )
        output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten())
        self.assertTrue(
            torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1),
            f"{output_slice}",
        )

    def test_output_type_pt_return_type_pt(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="pt", return_type="pt", **inputs)
        self.assertTrue(isinstance(output, torch.Tensor), f"Expected `torch.Tensor` output, got {type(output)}")
        self.assertEqual(
            output.shape[3], self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.shape[2]}"
        )
        self.assertEqual(
            output.shape[4], self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.shape[3]}"
        )
        output_slice = output[0, 0, 0, -3:, -3:].flatten()
        self.assertTrue(
            torch_all_close(output_slice, self.return_pt_slice.to(output_slice.dtype), rtol=1e-3, atol=1e-3),
            f"{output_slice}",
        )

    def test_output_type_mp4(self):
        inputs = self.get_dummy_inputs()
        output = remote_decode(output_type="mp4", return_type="mp4", **inputs)
        self.assertTrue(isinstance(output, bytes), f"Expected `bytes` output, got {type(output)}")


class RemoteAutoencoderKLSDv1Tests(
    RemoteAutoencoderKLMixin,
    unittest.TestCase,
):
    shape = (
        1,
        4,
        64,
        64,
    )
    out_hw = (
        512,
        512,
    )
    endpoint = DECODE_ENDPOINT_SD_V1
    dtype = torch.float16
    scaling_factor = 0.18215
    shift_factor = None
    processor_cls = VaeImageProcessor
    output_pt_slice = torch.tensor([31, 15, 11, 55, 30, 21, 66, 42, 30], dtype=torch.uint8)
    partial_postprocess_return_pt_slice = torch.tensor([100, 130, 99, 133, 106, 112, 97, 100, 121], dtype=torch.uint8)
    return_pt_slice = torch.tensor([-0.2177, 0.0217, -0.2258, 0.0412, -0.1687, -0.1232, -0.2416, -0.2130, -0.0543])


class RemoteAutoencoderKLSDXLTests(
    RemoteAutoencoderKLMixin,
    unittest.TestCase,
):
    shape = (
        1,
        4,
        128,
        128,
    )
    out_hw = (
        1024,
        1024,
    )
    endpoint = DECODE_ENDPOINT_SD_XL
    dtype = torch.float16
    scaling_factor = 0.13025
    shift_factor = None
    processor_cls = VaeImageProcessor
    output_pt_slice = torch.tensor([104, 52, 23, 114, 61, 35, 108, 87, 38], dtype=torch.uint8)
    partial_postprocess_return_pt_slice = torch.tensor([77, 86, 89, 49, 60, 75, 52, 65, 78], dtype=torch.uint8)
    return_pt_slice = torch.tensor([-0.3945, -0.3289, -0.2993, -0.6177, -0.5259, -0.4119, -0.5898, -0.4863, -0.3845])


class RemoteAutoencoderKLFluxTests(
    RemoteAutoencoderKLMixin,
    unittest.TestCase,
):
    shape = (
        1,
        16,
        128,
        128,
    )
    out_hw = (
        1024,
        1024,
    )
    endpoint = DECODE_ENDPOINT_FLUX
    dtype = torch.bfloat16
    scaling_factor = 0.3611
    shift_factor = 0.1159
    processor_cls = VaeImageProcessor
    output_pt_slice = torch.tensor([110, 72, 91, 62, 35, 52, 69, 55, 69], dtype=torch.uint8)
    partial_postprocess_return_pt_slice = torch.tensor(
        [202, 203, 203, 197, 195, 193, 189, 188, 178], dtype=torch.uint8
    )
    return_pt_slice = torch.tensor([0.5820, 0.5962, 0.5898, 0.5439, 0.5327, 0.5112, 0.4797, 0.4773, 0.3984])


class RemoteAutoencoderKLFluxPackedTests(
    RemoteAutoencoderKLMixin,
    unittest.TestCase,
):
    shape = (
        1,
        4096,
        64,
    )
    out_hw = (
        1024,
        1024,
    )
    height = 1024
    width = 1024
    endpoint = DECODE_ENDPOINT_FLUX
    dtype = torch.bfloat16
    scaling_factor = 0.3611
    shift_factor = 0.1159
    processor_cls = VaeImageProcessor
    # slices are different due to randn on different shape. we can pack the latent instead if we want the same
    output_pt_slice = torch.tensor([96, 116, 157, 45, 67, 104, 34, 56, 89], dtype=torch.uint8)
    partial_postprocess_return_pt_slice = torch.tensor(
        [168, 212, 202, 155, 191, 185, 150, 180, 168], dtype=torch.uint8
    )
    return_pt_slice = torch.tensor([0.3198, 0.6631, 0.5864, 0.2131, 0.4944, 0.4482, 0.1776, 0.4153, 0.3176])


class RemoteAutoencoderKLHunyuanVideoTests(
    RemoteAutoencoderKLHunyuanVideoMixin,
    unittest.TestCase,
):
    shape = (
        1,
        16,
        3,
        40,
        64,
    )
    out_hw = (
        320,
        512,
    )
    endpoint = DECODE_ENDPOINT_HUNYUAN_VIDEO
    dtype = torch.float16
    scaling_factor = 0.476986
    processor_cls = VideoProcessor
    output_pt_slice = torch.tensor([112, 92, 85, 112, 93, 85, 112, 94, 85], dtype=torch.uint8)
    partial_postprocess_return_pt_slice = torch.tensor(
        [149, 161, 168, 136, 150, 156, 129, 143, 149], dtype=torch.uint8
    )
    return_pt_slice = torch.tensor([0.1656, 0.2661, 0.3157, 0.0693, 0.1755, 0.2252, 0.0127, 0.1221, 0.1708])


class RemoteAutoencoderKLSlowTestMixin:
    channels: int = 4
    endpoint: str = None
    dtype: torch.dtype = None
    scaling_factor: float = None
    shift_factor: float = None
    width: int = None
    height: int = None

    def get_dummy_inputs(self):
        inputs = {
            "endpoint": self.endpoint,
            "scaling_factor": self.scaling_factor,
            "shift_factor": self.shift_factor,
            "height": self.height,
            "width": self.width,
        }
        return inputs

    def test_multi_res(self):
        inputs = self.get_dummy_inputs()
        for height in {320, 512, 640, 704, 896, 1024, 1208, 1384, 1536, 1608, 1864, 2048}:
            for width in {320, 512, 640, 704, 896, 1024, 1208, 1384, 1536, 1608, 1864, 2048}:
                inputs["tensor"] = torch.randn(
                    (1, self.channels, height // 8, width // 8),
                    device=torch_device,
                    dtype=self.dtype,
                    generator=torch.Generator(torch_device).manual_seed(13),
                )
                inputs["height"] = height
                inputs["width"] = width
                output = remote_decode(output_type="pt", partial_postprocess=True, **inputs)
                output.save(f"test_multi_res_{height}_{width}.png")


@slow
class RemoteAutoencoderKLSDv1SlowTests(
    RemoteAutoencoderKLSlowTestMixin,
    unittest.TestCase,
):
    endpoint = DECODE_ENDPOINT_SD_V1
    dtype = torch.float16
    scaling_factor = 0.18215
    shift_factor = None


@slow
class RemoteAutoencoderKLSDXLSlowTests(
    RemoteAutoencoderKLSlowTestMixin,
    unittest.TestCase,
):
    endpoint = DECODE_ENDPOINT_SD_XL
    dtype = torch.float16
    scaling_factor = 0.13025
    shift_factor = None


@slow
class RemoteAutoencoderKLFluxSlowTests(
    RemoteAutoencoderKLSlowTestMixin,
    unittest.TestCase,
):
    channels = 16
    endpoint = DECODE_ENDPOINT_FLUX
    dtype = torch.bfloat16
    scaling_factor = 0.3611
    shift_factor = 0.1159