File size: 14,515 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import importlib.util
import os

import cv2
import numpy as np
import torch
from PIL import Image, ImageOps
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import normalize, resize

from ...utils import get_logger, load_image


logger = get_logger(__name__)

_insightface_available = importlib.util.find_spec("insightface") is not None
_consisid_eva_clip_available = importlib.util.find_spec("consisid_eva_clip") is not None
_facexlib_available = importlib.util.find_spec("facexlib") is not None

if _insightface_available:
    import insightface
    from insightface.app import FaceAnalysis
else:
    raise ImportError("insightface is not available. Please install it using 'pip install insightface'.")

if _consisid_eva_clip_available:
    from consisid_eva_clip import create_model_and_transforms
    from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
else:
    raise ImportError("consisid_eva_clip is not available. Please install it using 'pip install consisid_eva_clip'.")

if _facexlib_available:
    from facexlib.parsing import init_parsing_model
    from facexlib.utils.face_restoration_helper import FaceRestoreHelper
else:
    raise ImportError("facexlib is not available. Please install it using 'pip install facexlib'.")


def resize_numpy_image_long(image, resize_long_edge=768):
    """
    Resize the input image to a specified long edge while maintaining aspect ratio.

    Args:
        image (numpy.ndarray): Input image (H x W x C or H x W).
        resize_long_edge (int): The target size for the long edge of the image. Default is 768.

    Returns:
        numpy.ndarray: Resized image with the long edge matching `resize_long_edge`, while maintaining the aspect
        ratio.
    """

    h, w = image.shape[:2]
    if max(h, w) <= resize_long_edge:
        return image
    k = resize_long_edge / max(h, w)
    h = int(h * k)
    w = int(w * k)
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
    return image


def img2tensor(imgs, bgr2rgb=True, float32=True):
    """Numpy array to tensor.

    Args:
        imgs (list[ndarray] | ndarray): Input images.
        bgr2rgb (bool): Whether to change bgr to rgb.
        float32 (bool): Whether to change to float32.

    Returns:
        list[tensor] | tensor: Tensor images. If returned results only have
            one element, just return tensor.
    """

    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            if img.dtype == "float64":
                img = img.astype("float32")
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = torch.from_numpy(img.transpose(2, 0, 1))
        if float32:
            img = img.float()
        return img

    if isinstance(imgs, list):
        return [_totensor(img, bgr2rgb, float32) for img in imgs]
    return _totensor(imgs, bgr2rgb, float32)


def to_gray(img):
    """
    Converts an RGB image to grayscale by applying the standard luminosity formula.

    Args:
        img (torch.Tensor): The input image tensor with shape (batch_size, channels, height, width).
                             The image is expected to be in RGB format (3 channels).

    Returns:
        torch.Tensor: The grayscale image tensor with shape (batch_size, 3, height, width).
                      The grayscale values are replicated across all three channels.
    """
    x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
    x = x.repeat(1, 3, 1, 1)
    return x


def process_face_embeddings(
    face_helper_1,
    clip_vision_model,
    face_helper_2,
    eva_transform_mean,
    eva_transform_std,
    app,
    device,
    weight_dtype,
    image,
    original_id_image=None,
    is_align_face=True,
):
    """
    Process face embeddings from an image, extracting relevant features such as face embeddings, landmarks, and parsed
    face features using a series of face detection and alignment tools.

    Args:
        face_helper_1: Face helper object (first helper) for alignment and landmark detection.
        clip_vision_model: Pre-trained CLIP vision model used for feature extraction.
        face_helper_2: Face helper object (second helper) for embedding extraction.
        eva_transform_mean: Mean values for image normalization before passing to EVA model.
        eva_transform_std: Standard deviation values for image normalization before passing to EVA model.
        app: Application instance used for face detection.
        device: Device (CPU or GPU) where the computations will be performed.
        weight_dtype: Data type of the weights for precision (e.g., `torch.float32`).
        image: Input image in RGB format with pixel values in the range [0, 255].
        original_id_image: (Optional) Original image for feature extraction if `is_align_face` is False.
        is_align_face: Boolean flag indicating whether face alignment should be performed.

    Returns:
        Tuple:
            - id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding
            - id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors.
            - return_face_features_image_2: Processed face features image after normalization and parsing.
            - face_kps: Keypoints of the face detected in the image.
    """

    face_helper_1.clean_all()
    image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    # get antelopev2 embedding
    face_info = app.get(image_bgr)
    if len(face_info) > 0:
        face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))[
            -1
        ]  # only use the maximum face
        id_ante_embedding = face_info["embedding"]  # (512,)
        face_kps = face_info["kps"]
    else:
        id_ante_embedding = None
        face_kps = None

    # using facexlib to detect and align face
    face_helper_1.read_image(image_bgr)
    face_helper_1.get_face_landmarks_5(only_center_face=True)
    if face_kps is None:
        face_kps = face_helper_1.all_landmarks_5[0]
    face_helper_1.align_warp_face()
    if len(face_helper_1.cropped_faces) == 0:
        raise RuntimeError("facexlib align face fail")
    align_face = face_helper_1.cropped_faces[0]  # (512, 512, 3)  # RGB

    # in case insightface didn't detect face
    if id_ante_embedding is None:
        logger.warning("Failed to detect face using insightface. Extracting embedding with align face")
        id_ante_embedding = face_helper_2.get_feat(align_face)

    id_ante_embedding = torch.from_numpy(id_ante_embedding).to(device, weight_dtype)  # torch.Size([512])
    if id_ante_embedding.ndim == 1:
        id_ante_embedding = id_ante_embedding.unsqueeze(0)  # torch.Size([1, 512])

    # parsing
    if is_align_face:
        input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0  # torch.Size([1, 3, 512, 512])
        input = input.to(device)
        parsing_out = face_helper_1.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
        parsing_out = parsing_out.argmax(dim=1, keepdim=True)  # torch.Size([1, 1, 512, 512])
        bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
        bg = sum(parsing_out == i for i in bg_label).bool()
        white_image = torch.ones_like(input)  # torch.Size([1, 3, 512, 512])
        # only keep the face features
        return_face_features_image = torch.where(bg, white_image, to_gray(input))  # torch.Size([1, 3, 512, 512])
        return_face_features_image_2 = torch.where(bg, white_image, input)  # torch.Size([1, 3, 512, 512])
    else:
        original_image_bgr = cv2.cvtColor(original_id_image, cv2.COLOR_RGB2BGR)
        input = img2tensor(original_image_bgr, bgr2rgb=True).unsqueeze(0) / 255.0  # torch.Size([1, 3, 512, 512])
        input = input.to(device)
        return_face_features_image = return_face_features_image_2 = input

    # transform img before sending to eva-clip-vit
    face_features_image = resize(
        return_face_features_image, clip_vision_model.image_size, InterpolationMode.BICUBIC
    )  # torch.Size([1, 3, 336, 336])
    face_features_image = normalize(face_features_image, eva_transform_mean, eva_transform_std)
    id_cond_vit, id_vit_hidden = clip_vision_model(
        face_features_image.to(weight_dtype), return_all_features=False, return_hidden=True, shuffle=False
    )  # torch.Size([1, 768]),  list(torch.Size([1, 577, 1024]))
    id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
    id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)

    id_cond = torch.cat(
        [id_ante_embedding, id_cond_vit], dim=-1
    )  # torch.Size([1, 512]), torch.Size([1, 768])  ->  torch.Size([1, 1280])

    return (
        id_cond,
        id_vit_hidden,
        return_face_features_image_2,
        face_kps,
    )  # torch.Size([1, 1280]), list(torch.Size([1, 577, 1024]))


def process_face_embeddings_infer(
    face_helper_1,
    clip_vision_model,
    face_helper_2,
    eva_transform_mean,
    eva_transform_std,
    app,
    device,
    weight_dtype,
    img_file_path,
    is_align_face=True,
):
    """
    Process face embeddings from an input image for inference, including alignment, feature extraction, and embedding
    concatenation.

    Args:
        face_helper_1: Face helper object (first helper) for alignment and landmark detection.
        clip_vision_model: Pre-trained CLIP vision model used for feature extraction.
        face_helper_2: Face helper object (second helper) for embedding extraction.
        eva_transform_mean: Mean values for image normalization before passing to EVA model.
        eva_transform_std: Standard deviation values for image normalization before passing to EVA model.
        app: Application instance used for face detection.
        device: Device (CPU or GPU) where the computations will be performed.
        weight_dtype: Data type of the weights for precision (e.g., `torch.float32`).
        img_file_path: Path to the input image file (string) or a numpy array representing an image.
        is_align_face: Boolean flag indicating whether face alignment should be performed (default: True).

    Returns:
        Tuple:
            - id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding.
            - id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors.
            - image: Processed face image after feature extraction and alignment.
            - face_kps: Keypoints of the face detected in the image.
    """

    # Load and preprocess the input image
    if isinstance(img_file_path, str):
        image = np.array(load_image(image=img_file_path).convert("RGB"))
    else:
        image = np.array(ImageOps.exif_transpose(Image.fromarray(img_file_path)).convert("RGB"))

    # Resize image to ensure the longer side is 1024 pixels
    image = resize_numpy_image_long(image, 1024)
    original_id_image = image

    # Process the image to extract face embeddings and related features
    id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(
        face_helper_1,
        clip_vision_model,
        face_helper_2,
        eva_transform_mean,
        eva_transform_std,
        app,
        device,
        weight_dtype,
        image,
        original_id_image,
        is_align_face,
    )

    # Convert the aligned cropped face image (torch tensor) to a numpy array
    tensor = align_crop_face_image.cpu().detach()
    tensor = tensor.squeeze()
    tensor = tensor.permute(1, 2, 0)
    tensor = tensor.numpy() * 255
    tensor = tensor.astype(np.uint8)
    image = ImageOps.exif_transpose(Image.fromarray(tensor))

    return id_cond, id_vit_hidden, image, face_kps


def prepare_face_models(model_path, device, dtype):
    """
    Prepare all face models for the facial recognition task.

    Parameters:
    - model_path: Path to the directory containing model files.
    - device: The device (e.g., 'cuda', 'cpu') where models will be loaded.
    - dtype: Data type (e.g., torch.float32) for model inference.

    Returns:
    - face_helper_1: First face restoration helper.
    - face_helper_2: Second face restoration helper.
    - face_clip_model: CLIP model for face extraction.
    - eva_transform_mean: Mean value for image normalization.
    - eva_transform_std: Standard deviation value for image normalization.
    - face_main_model: Main face analysis model.
    """
    # get helper model
    face_helper_1 = FaceRestoreHelper(
        upscale_factor=1,
        face_size=512,
        crop_ratio=(1, 1),
        det_model="retinaface_resnet50",
        save_ext="png",
        device=device,
        model_rootpath=os.path.join(model_path, "face_encoder"),
    )
    face_helper_1.face_parse = None
    face_helper_1.face_parse = init_parsing_model(
        model_name="bisenet", device=device, model_rootpath=os.path.join(model_path, "face_encoder")
    )
    face_helper_2 = insightface.model_zoo.get_model(
        f"{model_path}/face_encoder/models/antelopev2/glintr100.onnx", providers=["CUDAExecutionProvider"]
    )
    face_helper_2.prepare(ctx_id=0)

    # get local facial extractor part 1
    model, _, _ = create_model_and_transforms(
        "EVA02-CLIP-L-14-336",
        os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"),
        force_custom_clip=True,
    )
    face_clip_model = model.visual
    eva_transform_mean = getattr(face_clip_model, "image_mean", OPENAI_DATASET_MEAN)
    eva_transform_std = getattr(face_clip_model, "image_std", OPENAI_DATASET_STD)
    if not isinstance(eva_transform_mean, (list, tuple)):
        eva_transform_mean = (eva_transform_mean,) * 3
    if not isinstance(eva_transform_std, (list, tuple)):
        eva_transform_std = (eva_transform_std,) * 3
    eva_transform_mean = eva_transform_mean
    eva_transform_std = eva_transform_std

    # get local facial extractor part 2
    face_main_model = FaceAnalysis(
        name="antelopev2", root=os.path.join(model_path, "face_encoder"), providers=["CUDAExecutionProvider"]
    )
    face_main_model.prepare(ctx_id=0, det_size=(640, 640))

    # move face models to device
    face_helper_1.face_det.eval()
    face_helper_1.face_parse.eval()
    face_clip_model.eval()
    face_helper_1.face_det.to(device)
    face_helper_1.face_parse.to(device)
    face_clip_model.to(device, dtype=dtype)

    return face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std