File size: 11,402 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# # Copyright 2024 Sana-Sprint Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..schedulers.scheduling_utils import SchedulerMixin
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->SCM
class SCMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None


class SCMScheduler(SchedulerMixin, ConfigMixin):
    """
    `SCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
    non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass
    documentation for the generic methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        prediction_type (`str`, defaults to `trigflow`):
            Prediction type of the scheduler function. Currently only supports "trigflow".
        sigma_data (`float`, defaults to 0.5):
            The standard deviation of the noise added during multi-step inference.
    """

    # _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        prediction_type: str = "trigflow",
        sigma_data: float = 0.5,
    ):
        """
        Initialize the SCM scheduler.

        Args:
            num_train_timesteps (`int`, defaults to 1000):
                The number of diffusion steps to train the model.
            prediction_type (`str`, defaults to `trigflow`):
                Prediction type of the scheduler function. Currently only supports "trigflow".
            sigma_data (`float`, defaults to 0.5):
                The standard deviation of the noise added during multi-step inference.
        """
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        # setable values
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))

        self._step_index = None
        self._begin_index = None

    @property
    def step_index(self):
        return self._step_index

    @property
    def begin_index(self):
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def set_timesteps(
        self,
        num_inference_steps: int,
        timesteps: torch.Tensor = None,
        device: Union[str, torch.device] = None,
        max_timesteps: float = 1.57080,
        intermediate_timesteps: float = 1.3,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            timesteps (`torch.Tensor`, *optional*):
                Custom timesteps to use for the denoising process.
            max_timesteps (`float`, defaults to 1.57080):
                The maximum timestep value used in the SCM scheduler.
            intermediate_timesteps (`float`, *optional*, defaults to 1.3):
                The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
        """
        if num_inference_steps > self.config.num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {self.config.num_train_timesteps} timesteps."
            )

        if timesteps is not None and len(timesteps) != num_inference_steps + 1:
            raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.")

        if timesteps is not None and max_timesteps is not None:
            raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.")

        if timesteps is None and max_timesteps is None:
            raise ValueError("Should provide either `timesteps` or `max_timesteps`.")

        if intermediate_timesteps is not None and num_inference_steps != 2:
            raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.")

        self.num_inference_steps = num_inference_steps

        if timesteps is not None:
            if isinstance(timesteps, list):
                self.timesteps = torch.tensor(timesteps, device=device).float()
            elif isinstance(timesteps, torch.Tensor):
                self.timesteps = timesteps.to(device).float()
            else:
                raise ValueError(f"Unsupported timesteps type: {type(timesteps)}")
        elif intermediate_timesteps is not None:
            self.timesteps = torch.tensor([max_timesteps, intermediate_timesteps, 0], device=device).float()
        else:
            # max_timesteps=arctan(80/0.5)=1.56454 is the default from sCM paper, we choose a different value here
            self.timesteps = torch.linspace(max_timesteps, 0, num_inference_steps + 1, device=device).float()
        print(f"Set timesteps: {self.timesteps}")

        self._step_index = None
        self._begin_index = None

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: float,
        sample: torch.FloatTensor,
        generator: torch.Generator = None,
        return_dict: bool = True,
    ) -> Union[SCMSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_scm.SCMSchedulerOutput`] or `tuple`.
        Returns:
            [`~schedulers.scheduling_utils.SCMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_scm.SCMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if self.step_index is None:
            self._init_step_index(timestep)

        # 2. compute alphas, betas
        t = self.timesteps[self.step_index + 1]
        s = self.timesteps[self.step_index]

        # 4. Different Parameterization:
        parameterization = self.config.prediction_type

        if parameterization == "trigflow":
            pred_x0 = torch.cos(s) * sample - torch.sin(s) * model_output
        else:
            raise ValueError(f"Unsupported parameterization: {parameterization}")

        # 5. Sample z ~ N(0, I), For MultiStep Inference
        # Noise is not used for one-step sampling.
        if len(self.timesteps) > 1:
            noise = (
                randn_tensor(model_output.shape, device=model_output.device, generator=generator)
                * self.config.sigma_data
            )
            prev_sample = torch.cos(t) * pred_x0 + torch.sin(t) * noise
        else:
            prev_sample = pred_x0

        self._step_index += 1

        if not return_dict:
            return (prev_sample, pred_x0)

        return SCMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0)

    def __len__(self):
        return self.config.num_train_timesteps