Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# Based on [AnyText: Multilingual Visual Text Generation And Editing](https://huggingface.co/papers/2311.03054). | |
# Authors: Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, Xuansong Xie | |
# Code: https://github.com/tyxsspa/AnyText with Apache-2.0 license | |
# | |
# Adapted to Diffusers by [M. Tolga Cangöz](https://github.com/tolgacangoz). | |
import inspect | |
import math | |
import os | |
import re | |
import sys | |
import unicodedata | |
from functools import partial | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import cv2 | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
from huggingface_hub import hf_hub_download | |
from ocr_recog.RecModel import RecModel | |
from PIL import Image, ImageDraw, ImageFont | |
from safetensors.torch import load_file | |
from skimage.transform._geometric import _umeyama as get_sym_mat | |
from torch import nn | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import ( | |
FromSingleFileMixin, | |
IPAdapterMixin, | |
StableDiffusionLoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
) | |
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.constants import HF_MODULES_CACHE | |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor | |
class Checker: | |
def __init__(self): | |
pass | |
def _is_chinese_char(self, cp): | |
"""Checks whether CP is the codepoint of a CJK character.""" | |
# This defines a "chinese character" as anything in the CJK Unicode block: | |
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
# | |
# Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
# despite its name. The modern Korean Hangul alphabet is a different block, | |
# as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
# space-separated words, so they are not treated specially and handled | |
# like the all of the other languages. | |
if ( | |
(cp >= 0x4E00 and cp <= 0x9FFF) | |
or (cp >= 0x3400 and cp <= 0x4DBF) | |
or (cp >= 0x20000 and cp <= 0x2A6DF) | |
or (cp >= 0x2A700 and cp <= 0x2B73F) | |
or (cp >= 0x2B740 and cp <= 0x2B81F) | |
or (cp >= 0x2B820 and cp <= 0x2CEAF) | |
or (cp >= 0xF900 and cp <= 0xFAFF) | |
or (cp >= 0x2F800 and cp <= 0x2FA1F) | |
): | |
return True | |
return False | |
def _clean_text(self, text): | |
"""Performs invalid character removal and whitespace cleanup on text.""" | |
output = [] | |
for char in text: | |
cp = ord(char) | |
if cp == 0 or cp == 0xFFFD or self._is_control(char): | |
continue | |
if self._is_whitespace(char): | |
output.append(" ") | |
else: | |
output.append(char) | |
return "".join(output) | |
def _is_control(self, char): | |
"""Checks whether `chars` is a control character.""" | |
# These are technically control characters but we count them as whitespace | |
# characters. | |
if char == "\t" or char == "\n" or char == "\r": | |
return False | |
cat = unicodedata.category(char) | |
if cat in ("Cc", "Cf"): | |
return True | |
return False | |
def _is_whitespace(self, char): | |
"""Checks whether `chars` is a whitespace character.""" | |
# \t, \n, and \r are technically control characters but we treat them | |
# as whitespace since they are generally considered as such. | |
if char == " " or char == "\t" or char == "\n" or char == "\r": | |
return True | |
cat = unicodedata.category(char) | |
if cat == "Zs": | |
return True | |
return False | |
checker = Checker() | |
PLACE_HOLDER = "*" | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> # This example requires the `anytext_controlnet.py` file: | |
>>> # !git clone --depth 1 https://github.com/huggingface/diffusers.git | |
>>> # %cd diffusers/examples/research_projects/anytext | |
>>> # Let's choose a font file shared by an HF staff: | |
>>> # !wget https://huggingface.co/spaces/ysharma/TranslateQuotesInImageForwards/resolve/main/arial-unicode-ms.ttf | |
>>> import torch | |
>>> from diffusers import DiffusionPipeline | |
>>> from anytext_controlnet import AnyTextControlNetModel | |
>>> from diffusers.utils import load_image | |
>>> anytext_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16, | |
... variant="fp16",) | |
>>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/anytext", font_path="arial-unicode-ms.ttf", | |
... controlnet=anytext_controlnet, torch_dtype=torch.float16, | |
... trust_remote_code=False, # One needs to give permission to run this pipeline's code | |
... ).to("cuda") | |
>>> # generate image | |
>>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream' | |
>>> draw_pos = load_image("https://raw.githubusercontent.com/tyxsspa/AnyText/refs/heads/main/example_images/gen9.png") | |
>>> # There are two modes: "generate" and "edit". "edit" mode requires `ori_image` parameter for the image to be edited. | |
>>> image = pipe(prompt, num_inference_steps=20, mode="generate", draw_pos=draw_pos, | |
... ).images[0] | |
>>> image | |
``` | |
""" | |
def get_clip_token_for_string(tokenizer, string): | |
batch_encoding = tokenizer( | |
string, | |
truncation=True, | |
max_length=77, | |
return_length=True, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
tokens = batch_encoding["input_ids"] | |
assert torch.count_nonzero(tokens - 49407) == 2, ( | |
f"String '{string}' maps to more than a single token. Please use another string" | |
) | |
return tokens[0, 1] | |
def get_recog_emb(encoder, img_list): | |
_img_list = [(img.repeat(1, 3, 1, 1) * 255)[0] for img in img_list] | |
encoder.predictor.eval() | |
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False) | |
return preds_neck | |
class EmbeddingManager(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
embedder, | |
placeholder_string="*", | |
use_fp16=False, | |
token_dim=768, | |
get_recog_emb=None, | |
): | |
super().__init__() | |
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer) | |
self.proj = nn.Linear(40 * 64, token_dim) | |
proj_dir = hf_hub_download( | |
repo_id="tolgacangoz/anytext", | |
filename="text_embedding_module/proj.safetensors", | |
cache_dir=HF_MODULES_CACHE, | |
) | |
self.proj.load_state_dict(load_file(proj_dir, device=str(embedder.device))) | |
if use_fp16: | |
self.proj = self.proj.to(dtype=torch.float16) | |
self.placeholder_token = get_token_for_string(placeholder_string) | |
def encode_text(self, text_info): | |
if self.config.get_recog_emb is None: | |
self.config.get_recog_emb = partial(get_recog_emb, self.recog) | |
gline_list = [] | |
for i in range(len(text_info["n_lines"])): # sample index in a batch | |
n_lines = text_info["n_lines"][i] | |
for j in range(n_lines): # line | |
gline_list += [text_info["gly_line"][j][i : i + 1]] | |
if len(gline_list) > 0: | |
recog_emb = self.config.get_recog_emb(gline_list) | |
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1).to(self.proj.weight.dtype)) | |
self.text_embs_all = [] | |
n_idx = 0 | |
for i in range(len(text_info["n_lines"])): # sample index in a batch | |
n_lines = text_info["n_lines"][i] | |
text_embs = [] | |
for j in range(n_lines): # line | |
text_embs += [enc_glyph[n_idx : n_idx + 1]] | |
n_idx += 1 | |
self.text_embs_all += [text_embs] | |
def forward( | |
self, | |
tokenized_text, | |
embedded_text, | |
): | |
b, device = tokenized_text.shape[0], tokenized_text.device | |
for i in range(b): | |
idx = tokenized_text[i] == self.placeholder_token.to(device) | |
if sum(idx) > 0: | |
if i >= len(self.text_embs_all): | |
logger.warning("truncation for log images...") | |
break | |
text_emb = torch.cat(self.text_embs_all[i], dim=0) | |
if sum(idx) != len(text_emb): | |
logger.warning("truncation for long caption...") | |
text_emb = text_emb.to(embedded_text.device) | |
embedded_text[i][idx] = text_emb[: sum(idx)] | |
return embedded_text | |
def embedding_parameters(self): | |
return self.parameters() | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
def min_bounding_rect(img): | |
ret, thresh = cv2.threshold(img, 127, 255, 0) | |
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
if len(contours) == 0: | |
print("Bad contours, using fake bbox...") | |
return np.array([[0, 0], [100, 0], [100, 100], [0, 100]]) | |
max_contour = max(contours, key=cv2.contourArea) | |
rect = cv2.minAreaRect(max_contour) | |
box = cv2.boxPoints(rect) | |
box = np.int0(box) | |
# sort | |
x_sorted = sorted(box, key=lambda x: x[0]) | |
left = x_sorted[:2] | |
right = x_sorted[2:] | |
left = sorted(left, key=lambda x: x[1]) | |
(tl, bl) = left | |
right = sorted(right, key=lambda x: x[1]) | |
(tr, br) = right | |
if tl[1] > bl[1]: | |
(tl, bl) = (bl, tl) | |
if tr[1] > br[1]: | |
(tr, br) = (br, tr) | |
return np.array([tl, tr, br, bl]) | |
def adjust_image(box, img): | |
pts1 = np.float32([box[0], box[1], box[2], box[3]]) | |
width = max(np.linalg.norm(pts1[0] - pts1[1]), np.linalg.norm(pts1[2] - pts1[3])) | |
height = max(np.linalg.norm(pts1[0] - pts1[3]), np.linalg.norm(pts1[1] - pts1[2])) | |
pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]]) | |
# get transform matrix | |
M = get_sym_mat(pts1, pts2, estimate_scale=True) | |
C, H, W = img.shape | |
T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]]) | |
theta = np.linalg.inv(T @ M @ np.linalg.inv(T)) | |
theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device) | |
grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True) | |
result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True) | |
result = torch.clamp(result.squeeze(0), 0, 255) | |
# crop | |
result = result[:, : int(height), : int(width)] | |
return result | |
def crop_image(src_img, mask): | |
box = min_bounding_rect(mask) | |
result = adjust_image(box, src_img) | |
if len(result.shape) == 2: | |
result = torch.stack([result] * 3, axis=-1) | |
return result | |
def create_predictor(model_lang="ch", device="cpu", use_fp16=False): | |
model_dir = hf_hub_download( | |
repo_id="tolgacangoz/anytext", | |
filename="text_embedding_module/OCR/ppv3_rec.pth", | |
cache_dir=HF_MODULES_CACHE, | |
) | |
if not os.path.exists(model_dir): | |
raise ValueError("not find model file path {}".format(model_dir)) | |
if model_lang == "ch": | |
n_class = 6625 | |
elif model_lang == "en": | |
n_class = 97 | |
else: | |
raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}") | |
rec_config = { | |
"in_channels": 3, | |
"backbone": {"type": "MobileNetV1Enhance", "scale": 0.5, "last_conv_stride": [1, 2], "last_pool_type": "avg"}, | |
"neck": { | |
"type": "SequenceEncoder", | |
"encoder_type": "svtr", | |
"dims": 64, | |
"depth": 2, | |
"hidden_dims": 120, | |
"use_guide": True, | |
}, | |
"head": {"type": "CTCHead", "fc_decay": 0.00001, "out_channels": n_class, "return_feats": True}, | |
} | |
rec_model = RecModel(rec_config) | |
state_dict = torch.load(model_dir, map_location=device) | |
rec_model.load_state_dict(state_dict) | |
return rec_model | |
def _check_image_file(path): | |
img_end = ("tiff", "tif", "bmp", "rgb", "jpg", "png", "jpeg") | |
return path.lower().endswith(tuple(img_end)) | |
def get_image_file_list(img_file): | |
imgs_lists = [] | |
if img_file is None or not os.path.exists(img_file): | |
raise Exception("not found any img file in {}".format(img_file)) | |
if os.path.isfile(img_file) and _check_image_file(img_file): | |
imgs_lists.append(img_file) | |
elif os.path.isdir(img_file): | |
for single_file in os.listdir(img_file): | |
file_path = os.path.join(img_file, single_file) | |
if os.path.isfile(file_path) and _check_image_file(file_path): | |
imgs_lists.append(file_path) | |
if len(imgs_lists) == 0: | |
raise Exception("not found any img file in {}".format(img_file)) | |
imgs_lists = sorted(imgs_lists) | |
return imgs_lists | |
class TextRecognizer(object): | |
def __init__(self, args, predictor): | |
self.rec_image_shape = [int(v) for v in args["rec_image_shape"].split(",")] | |
self.rec_batch_num = args["rec_batch_num"] | |
self.predictor = predictor | |
self.chars = self.get_char_dict(args["rec_char_dict_path"]) | |
self.char2id = {x: i for i, x in enumerate(self.chars)} | |
self.is_onnx = not isinstance(self.predictor, torch.nn.Module) | |
self.use_fp16 = args["use_fp16"] | |
# img: CHW | |
def resize_norm_img(self, img, max_wh_ratio): | |
imgC, imgH, imgW = self.rec_image_shape | |
assert imgC == img.shape[0] | |
imgW = int((imgH * max_wh_ratio)) | |
h, w = img.shape[1:] | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = torch.nn.functional.interpolate( | |
img.unsqueeze(0), | |
size=(imgH, resized_w), | |
mode="bilinear", | |
align_corners=True, | |
) | |
resized_image /= 255.0 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device) | |
padding_im[:, :, 0:resized_w] = resized_image[0] | |
return padding_im | |
# img_list: list of tensors with shape chw 0-255 | |
def pred_imglist(self, img_list, show_debug=False): | |
img_num = len(img_list) | |
assert img_num > 0 | |
# Calculate the aspect ratio of all text bars | |
width_list = [] | |
for img in img_list: | |
width_list.append(img.shape[2] / float(img.shape[1])) | |
# Sorting can speed up the recognition process | |
indices = torch.from_numpy(np.argsort(np.array(width_list))) | |
batch_num = self.rec_batch_num | |
preds_all = [None] * img_num | |
preds_neck_all = [None] * img_num | |
for beg_img_no in range(0, img_num, batch_num): | |
end_img_no = min(img_num, beg_img_no + batch_num) | |
norm_img_batch = [] | |
imgC, imgH, imgW = self.rec_image_shape[:3] | |
max_wh_ratio = imgW / imgH | |
for ino in range(beg_img_no, end_img_no): | |
h, w = img_list[indices[ino]].shape[1:] | |
if h > w * 1.2: | |
img = img_list[indices[ino]] | |
img = torch.transpose(img, 1, 2).flip(dims=[1]) | |
img_list[indices[ino]] = img | |
h, w = img.shape[1:] | |
# wh_ratio = w * 1.0 / h | |
# max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio | |
for ino in range(beg_img_no, end_img_no): | |
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) | |
if self.use_fp16: | |
norm_img = norm_img.half() | |
norm_img = norm_img.unsqueeze(0) | |
norm_img_batch.append(norm_img) | |
norm_img_batch = torch.cat(norm_img_batch, dim=0) | |
if show_debug: | |
for i in range(len(norm_img_batch)): | |
_img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy() | |
_img = (_img + 0.5) * 255 | |
_img = _img[:, :, ::-1] | |
file_name = f"{indices[beg_img_no + i]}" | |
if os.path.exists(file_name + ".jpg"): | |
file_name += "_2" # ori image | |
cv2.imwrite(file_name + ".jpg", _img) | |
if self.is_onnx: | |
input_dict = {} | |
input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy() | |
outputs = self.predictor.run(None, input_dict) | |
preds = {} | |
preds["ctc"] = torch.from_numpy(outputs[0]) | |
preds["ctc_neck"] = [torch.zeros(1)] * img_num | |
else: | |
preds = self.predictor(norm_img_batch.to(next(self.predictor.parameters()).device)) | |
for rno in range(preds["ctc"].shape[0]): | |
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno] | |
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno] | |
return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0) | |
def get_char_dict(self, character_dict_path): | |
character_str = [] | |
with open(character_dict_path, "rb") as fin: | |
lines = fin.readlines() | |
for line in lines: | |
line = line.decode("utf-8").strip("\n").strip("\r\n") | |
character_str.append(line) | |
dict_character = list(character_str) | |
dict_character = ["sos"] + dict_character + [" "] # eos is space | |
return dict_character | |
def get_text(self, order): | |
char_list = [self.chars[text_id] for text_id in order] | |
return "".join(char_list) | |
def decode(self, mat): | |
text_index = mat.detach().cpu().numpy().argmax(axis=1) | |
ignored_tokens = [0] | |
selection = np.ones(len(text_index), dtype=bool) | |
selection[1:] = text_index[1:] != text_index[:-1] | |
for ignored_token in ignored_tokens: | |
selection &= text_index != ignored_token | |
return text_index[selection], np.where(selection)[0] | |
def get_ctcloss(self, preds, gt_text, weight): | |
if not isinstance(weight, torch.Tensor): | |
weight = torch.tensor(weight).to(preds.device) | |
ctc_loss = torch.nn.CTCLoss(reduction="none") | |
log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC | |
targets = [] | |
target_lengths = [] | |
for t in gt_text: | |
targets += [self.char2id.get(i, len(self.chars) - 1) for i in t] | |
target_lengths += [len(t)] | |
targets = torch.tensor(targets).to(preds.device) | |
target_lengths = torch.tensor(target_lengths).to(preds.device) | |
input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(preds.device) | |
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths) | |
loss = loss / input_lengths * weight | |
return loss | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class FrozenCLIPEmbedderT3(AbstractEncoder, ModelMixin, ConfigMixin): | |
"""Uses the CLIP transformer encoder for text (from Hugging Face)""" | |
def __init__( | |
self, | |
device="cpu", | |
max_length=77, | |
freeze=True, | |
use_fp16=False, | |
variant: Optional[str] = None, | |
): | |
super().__init__() | |
self.tokenizer = CLIPTokenizer.from_pretrained("tolgacangoz/anytext", subfolder="tokenizer") | |
self.transformer = CLIPTextModel.from_pretrained( | |
"tolgacangoz/anytext", | |
subfolder="text_encoder", | |
torch_dtype=torch.float16 if use_fp16 else torch.float32, | |
variant="fp16" if use_fp16 else None, | |
) | |
if freeze: | |
self.freeze() | |
def embedding_forward( | |
self, | |
input_ids=None, | |
position_ids=None, | |
inputs_embeds=None, | |
embedding_manager=None, | |
): | |
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
if inputs_embeds is None: | |
inputs_embeds = self.token_embedding(input_ids) | |
if embedding_manager is not None: | |
inputs_embeds = embedding_manager(input_ids, inputs_embeds) | |
position_embeddings = self.position_embedding(position_ids) | |
embeddings = inputs_embeds + position_embeddings | |
return embeddings | |
self.transformer.text_model.embeddings.forward = embedding_forward.__get__( | |
self.transformer.text_model.embeddings | |
) | |
def encoder_forward( | |
self, | |
inputs_embeds, | |
attention_mask=None, | |
causal_attention_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
causal_attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
return hidden_states | |
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder) | |
def text_encoder_forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
position_ids=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
embedding_manager=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is None: | |
raise ValueError("You have to specify either input_ids") | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
hidden_states = self.embeddings( | |
input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager | |
) | |
# CLIP's text model uses causal mask, prepare it here. | |
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 | |
causal_attention_mask = _create_4d_causal_attention_mask( | |
input_shape, hidden_states.dtype, device=hidden_states.device | |
) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) | |
last_hidden_state = self.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=attention_mask, | |
causal_attention_mask=causal_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = self.final_layer_norm(last_hidden_state) | |
return last_hidden_state | |
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model) | |
def transformer_forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
position_ids=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
embedding_manager=None, | |
): | |
return self.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
embedding_manager=embedding_manager, | |
) | |
self.transformer.forward = transformer_forward.__get__(self.transformer) | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text, **kwargs): | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=False, | |
max_length=self.config.max_length, | |
return_length=True, | |
return_overflowing_tokens=False, | |
padding="longest", | |
return_tensors="pt", | |
) | |
input_ids = batch_encoding["input_ids"] | |
tokens_list = self.split_chunks(input_ids) | |
z_list = [] | |
for tokens in tokens_list: | |
tokens = tokens.to(self.device) | |
_z = self.transformer(input_ids=tokens, **kwargs) | |
z_list += [_z] | |
return torch.cat(z_list, dim=1) | |
def encode(self, text, **kwargs): | |
return self(text, **kwargs) | |
def split_chunks(self, input_ids, chunk_size=75): | |
tokens_list = [] | |
bs, n = input_ids.shape | |
id_start = input_ids[:, 0].unsqueeze(1) # dim --> [bs, 1] | |
id_end = input_ids[:, -1].unsqueeze(1) | |
if n == 2: # empty caption | |
tokens_list.append(torch.cat((id_start,) + (id_end,) * (chunk_size + 1), dim=1)) | |
trimmed_encoding = input_ids[:, 1:-1] | |
num_full_groups = (n - 2) // chunk_size | |
for i in range(num_full_groups): | |
group = trimmed_encoding[:, i * chunk_size : (i + 1) * chunk_size] | |
group_pad = torch.cat((id_start, group, id_end), dim=1) | |
tokens_list.append(group_pad) | |
remaining_columns = (n - 2) % chunk_size | |
if remaining_columns > 0: | |
remaining_group = trimmed_encoding[:, -remaining_columns:] | |
padding_columns = chunk_size - remaining_group.shape[1] | |
padding = id_end.expand(bs, padding_columns) | |
remaining_group_pad = torch.cat((id_start, remaining_group, padding, id_end), dim=1) | |
tokens_list.append(remaining_group_pad) | |
return tokens_list | |
class TextEmbeddingModule(ModelMixin, ConfigMixin): | |
def __init__(self, font_path, use_fp16=False, device="cpu"): | |
super().__init__() | |
font = ImageFont.truetype(font_path, 60) | |
self.frozen_CLIP_embedder_t3 = FrozenCLIPEmbedderT3(device=device, use_fp16=use_fp16) | |
self.embedding_manager = EmbeddingManager(self.frozen_CLIP_embedder_t3, use_fp16=use_fp16) | |
self.text_predictor = create_predictor(device=device, use_fp16=use_fp16).eval() | |
args = { | |
"rec_image_shape": "3, 48, 320", | |
"rec_batch_num": 6, | |
"rec_char_dict_path": hf_hub_download( | |
repo_id="tolgacangoz/anytext", | |
filename="text_embedding_module/OCR/ppocr_keys_v1.txt", | |
cache_dir=HF_MODULES_CACHE, | |
), | |
"use_fp16": use_fp16, | |
} | |
self.embedding_manager.recog = TextRecognizer(args, self.text_predictor) | |
self.register_to_config(font=font) | |
def forward( | |
self, | |
prompt, | |
texts, | |
negative_prompt, | |
num_images_per_prompt, | |
mode, | |
draw_pos, | |
sort_priority="↕", | |
max_chars=77, | |
revise_pos=False, | |
h=512, | |
w=512, | |
): | |
if prompt is None and texts is None: | |
raise ValueError("Prompt or texts must be provided!") | |
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg) | |
if draw_pos is None: | |
pos_imgs = np.zeros((w, h, 1)) | |
if isinstance(draw_pos, PIL.Image.Image): | |
pos_imgs = np.array(draw_pos)[..., ::-1] | |
pos_imgs = 255 - pos_imgs | |
elif isinstance(draw_pos, str): | |
draw_pos = cv2.imread(draw_pos)[..., ::-1] | |
if draw_pos is None: | |
raise ValueError(f"Can't read draw_pos image from {draw_pos}!") | |
pos_imgs = 255 - draw_pos | |
elif isinstance(draw_pos, torch.Tensor): | |
pos_imgs = draw_pos.cpu().numpy() | |
else: | |
if not isinstance(draw_pos, np.ndarray): | |
raise ValueError(f"Unknown format of draw_pos: {type(draw_pos)}") | |
if mode == "edit": | |
pos_imgs = cv2.resize(pos_imgs, (w, h)) | |
pos_imgs = pos_imgs[..., 0:1] | |
pos_imgs = cv2.convertScaleAbs(pos_imgs) | |
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY) | |
# separate pos_imgs | |
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority) | |
if len(pos_imgs) == 0: | |
pos_imgs = [np.zeros((h, w, 1))] | |
n_lines = len(texts) | |
if len(pos_imgs) < n_lines: | |
if n_lines == 1 and texts[0] == " ": | |
pass # text-to-image without text | |
else: | |
raise ValueError( | |
f"Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!" | |
) | |
elif len(pos_imgs) > n_lines: | |
str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt." | |
logger.warning(str_warning) | |
# get pre_pos, poly_list, hint that needed for anytext | |
pre_pos = [] | |
poly_list = [] | |
for input_pos in pos_imgs: | |
if input_pos.mean() != 0: | |
input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos | |
poly, pos_img = self.find_polygon(input_pos) | |
pre_pos += [pos_img / 255.0] | |
poly_list += [poly] | |
else: | |
pre_pos += [np.zeros((h, w, 1))] | |
poly_list += [None] | |
np_hint = np.sum(pre_pos, axis=0).clip(0, 1) | |
# prepare info dict | |
text_info = {} | |
text_info["glyphs"] = [] | |
text_info["gly_line"] = [] | |
text_info["positions"] = [] | |
text_info["n_lines"] = [len(texts)] * num_images_per_prompt | |
for i in range(len(texts)): | |
text = texts[i] | |
if len(text) > max_chars: | |
str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...' | |
logger.warning(str_warning) | |
text = text[:max_chars] | |
gly_scale = 2 | |
if pre_pos[i].mean() != 0: | |
gly_line = self.draw_glyph(self.config.font, text) | |
glyphs = self.draw_glyph2( | |
self.config.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False | |
) | |
if revise_pos: | |
resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])) | |
new_pos = cv2.morphologyEx( | |
(resize_gly * 255).astype(np.uint8), | |
cv2.MORPH_CLOSE, | |
kernel=np.ones((resize_gly.shape[0] // 10, resize_gly.shape[1] // 10), dtype=np.uint8), | |
iterations=1, | |
) | |
new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos | |
contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
if len(contours) != 1: | |
str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..." | |
logger.warning(str_warning) | |
else: | |
rect = cv2.minAreaRect(contours[0]) | |
poly = np.int0(cv2.boxPoints(rect)) | |
pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0 | |
else: | |
glyphs = np.zeros((h * gly_scale, w * gly_scale, 1)) | |
gly_line = np.zeros((80, 512, 1)) | |
pos = pre_pos[i] | |
text_info["glyphs"] += [self.arr2tensor(glyphs, num_images_per_prompt)] | |
text_info["gly_line"] += [self.arr2tensor(gly_line, num_images_per_prompt)] | |
text_info["positions"] += [self.arr2tensor(pos, num_images_per_prompt)] | |
self.embedding_manager.encode_text(text_info) | |
prompt_embeds = self.frozen_CLIP_embedder_t3.encode([prompt], embedding_manager=self.embedding_manager) | |
self.embedding_manager.encode_text(text_info) | |
negative_prompt_embeds = self.frozen_CLIP_embedder_t3.encode( | |
[negative_prompt or ""], embedding_manager=self.embedding_manager | |
) | |
return prompt_embeds, negative_prompt_embeds, text_info, np_hint | |
def arr2tensor(self, arr, bs): | |
arr = np.transpose(arr, (2, 0, 1)) | |
_arr = torch.from_numpy(arr.copy()).float().cpu() | |
if self.config.use_fp16: | |
_arr = _arr.half() | |
_arr = torch.stack([_arr for _ in range(bs)], dim=0) | |
return _arr | |
def separate_pos_imgs(self, img, sort_priority, gap=102): | |
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img) | |
components = [] | |
for label in range(1, num_labels): | |
component = np.zeros_like(img) | |
component[labels == label] = 255 | |
components.append((component, centroids[label])) | |
if sort_priority == "↕": | |
fir, sec = 1, 0 # top-down first | |
elif sort_priority == "↔": | |
fir, sec = 0, 1 # left-right first | |
else: | |
raise ValueError(f"Unknown sort_priority: {sort_priority}") | |
components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap)) | |
sorted_components = [c[0] for c in components] | |
return sorted_components | |
def find_polygon(self, image, min_rect=False): | |
contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
max_contour = max(contours, key=cv2.contourArea) # get contour with max area | |
if min_rect: | |
# get minimum enclosing rectangle | |
rect = cv2.minAreaRect(max_contour) | |
poly = np.int0(cv2.boxPoints(rect)) | |
else: | |
# get approximate polygon | |
epsilon = 0.01 * cv2.arcLength(max_contour, True) | |
poly = cv2.approxPolyDP(max_contour, epsilon, True) | |
n, _, xy = poly.shape | |
poly = poly.reshape(n, xy) | |
cv2.drawContours(image, [poly], -1, 255, -1) | |
return poly, image | |
def draw_glyph(self, font, text): | |
g_size = 50 | |
W, H = (512, 80) | |
new_font = font.font_variant(size=g_size) | |
img = Image.new(mode="1", size=(W, H), color=0) | |
draw = ImageDraw.Draw(img) | |
left, top, right, bottom = new_font.getbbox(text) | |
text_width = max(right - left, 5) | |
text_height = max(bottom - top, 5) | |
ratio = min(W * 0.9 / text_width, H * 0.9 / text_height) | |
new_font = font.font_variant(size=int(g_size * ratio)) | |
left, top, right, bottom = new_font.getbbox(text) | |
text_width = right - left | |
text_height = bottom - top | |
x = (img.width - text_width) // 2 | |
y = (img.height - text_height) // 2 - top // 2 | |
draw.text((x, y), text, font=new_font, fill="white") | |
img = np.expand_dims(np.array(img), axis=2).astype(np.float64) | |
return img | |
def draw_glyph2(self, font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True): | |
enlarge_polygon = polygon * scale | |
rect = cv2.minAreaRect(enlarge_polygon) | |
box = cv2.boxPoints(rect) | |
box = np.int0(box) | |
w, h = rect[1] | |
angle = rect[2] | |
if angle < -45: | |
angle += 90 | |
angle = -angle | |
if w < h: | |
angle += 90 | |
vert = False | |
if abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng: | |
_w = max(box[:, 0]) - min(box[:, 0]) | |
_h = max(box[:, 1]) - min(box[:, 1]) | |
if _h >= _w: | |
vert = True | |
angle = 0 | |
img = np.zeros((height * scale, width * scale, 3), np.uint8) | |
img = Image.fromarray(img) | |
# infer font size | |
image4ratio = Image.new("RGB", img.size, "white") | |
draw = ImageDraw.Draw(image4ratio) | |
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font) | |
text_w = min(w, h) * (_tw / _th) | |
if text_w <= max(w, h): | |
# add space | |
if len(text) > 1 and not vert and add_space: | |
for i in range(1, 100): | |
text_space = self.insert_spaces(text, i) | |
_, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font) | |
if min(w, h) * (_tw2 / _th2) > max(w, h): | |
break | |
text = self.insert_spaces(text, i - 1) | |
font_size = min(w, h) * 0.80 | |
else: | |
shrink = 0.75 if vert else 0.85 | |
font_size = min(w, h) / (text_w / max(w, h)) * shrink | |
new_font = font.font_variant(size=int(font_size)) | |
left, top, right, bottom = new_font.getbbox(text) | |
text_width = right - left | |
text_height = bottom - top | |
layer = Image.new("RGBA", img.size, (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(layer) | |
if not vert: | |
draw.text( | |
(rect[0][0] - text_width // 2, rect[0][1] - text_height // 2 - top), | |
text, | |
font=new_font, | |
fill=(255, 255, 255, 255), | |
) | |
else: | |
x_s = min(box[:, 0]) + _w // 2 - text_height // 2 | |
y_s = min(box[:, 1]) | |
for c in text: | |
draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255)) | |
_, _t, _, _b = new_font.getbbox(c) | |
y_s += _b | |
rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1])) | |
x_offset = int((img.width - rotated_layer.width) / 2) | |
y_offset = int((img.height - rotated_layer.height) / 2) | |
img.paste(rotated_layer, (x_offset, y_offset), rotated_layer) | |
img = np.expand_dims(np.array(img.convert("1")), axis=2).astype(np.float64) | |
return img | |
def insert_spaces(self, string, nSpace): | |
if nSpace == 0: | |
return string | |
new_string = "" | |
for char in string: | |
new_string += char + " " * nSpace | |
return new_string[:-nSpace] | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
class AuxiliaryLatentModule(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
vae, | |
device="cpu", | |
): | |
super().__init__() | |
def forward( | |
self, | |
text_info, | |
mode, | |
draw_pos, | |
ori_image, | |
num_images_per_prompt, | |
np_hint, | |
h=512, | |
w=512, | |
): | |
if mode == "generate": | |
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image | |
elif mode == "edit": | |
if draw_pos is None or ori_image is None: | |
raise ValueError("Reference image and position image are needed for text editing!") | |
if isinstance(ori_image, str): | |
ori_image = cv2.imread(ori_image)[..., ::-1] | |
if ori_image is None: | |
raise ValueError(f"Can't read ori_image image from {ori_image}!") | |
elif isinstance(ori_image, torch.Tensor): | |
ori_image = ori_image.cpu().numpy() | |
elif isinstance(ori_image, PIL.Image.Image): | |
ori_image = np.array(ori_image.convert("RGB")) | |
else: | |
if not isinstance(ori_image, np.ndarray): | |
raise ValueError(f"Unknown format of ori_image: {type(ori_image)}") | |
edit_image = ori_image.clip(1, 255) # for mask reason | |
edit_image = self.check_channels(edit_image) | |
edit_image = self.resize_image( | |
edit_image, max_length=768 | |
) # make w h multiple of 64, resize if w or h > max_length | |
# get masked_x | |
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint) | |
masked_img = np.transpose(masked_img, (2, 0, 1)) | |
device = next(self.config.vae.parameters()).device | |
dtype = next(self.config.vae.parameters()).dtype | |
masked_img = torch.from_numpy(masked_img.copy()).float().to(device) | |
if dtype == torch.float16: | |
masked_img = masked_img.half() | |
masked_x = ( | |
retrieve_latents(self.config.vae.encode(masked_img[None, ...])) * self.config.vae.config.scaling_factor | |
).detach() | |
if dtype == torch.float16: | |
masked_x = masked_x.half() | |
text_info["masked_x"] = torch.cat([masked_x for _ in range(num_images_per_prompt)], dim=0) | |
glyphs = torch.cat(text_info["glyphs"], dim=1).sum(dim=1, keepdim=True) | |
positions = torch.cat(text_info["positions"], dim=1).sum(dim=1, keepdim=True) | |
return glyphs, positions, text_info | |
def check_channels(self, image): | |
channels = image.shape[2] if len(image.shape) == 3 else 1 | |
if channels == 1: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |
elif channels > 3: | |
image = image[:, :, :3] | |
return image | |
def resize_image(self, img, max_length=768): | |
height, width = img.shape[:2] | |
max_dimension = max(height, width) | |
if max_dimension > max_length: | |
scale_factor = max_length / max_dimension | |
new_width = int(round(width * scale_factor)) | |
new_height = int(round(height * scale_factor)) | |
new_size = (new_width, new_height) | |
img = cv2.resize(img, new_size) | |
height, width = img.shape[:2] | |
img = cv2.resize(img, (width - (width % 64), height - (height % 64))) | |
return img | |
def insert_spaces(self, string, nSpace): | |
if nSpace == 0: | |
return string | |
new_string = "" | |
for char in string: | |
new_string += char + " " * nSpace | |
return new_string[:-nSpace] | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class AnyTextPipeline( | |
DiffusionPipeline, | |
StableDiffusionMixin, | |
TextualInversionLoaderMixin, | |
StableDiffusionLoraLoaderMixin, | |
IPAdapterMixin, | |
FromSingleFileMixin, | |
): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
tokenizer ([`~transformers.CLIPTokenizer`]): | |
A `CLIPTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): | |
Provides additional conditioning to the `unet` during the denoising process. If you set multiple | |
ControlNets as a list, the outputs from each ControlNet are added together to create one combined | |
additional conditioning. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details | |
about a model's potential harms. | |
feature_extractor ([`~transformers.CLIPImageProcessor`]): | |
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. | |
""" | |
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | |
_exclude_from_cpu_offload = ["safety_checker"] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
font_path: str = None, | |
text_embedding_module: Optional[TextEmbeddingModule] = None, | |
auxiliary_latent_module: Optional[AuxiliaryLatentModule] = None, | |
trust_remote_code: bool = False, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if font_path is None: | |
raise ValueError("font_path is required!") | |
text_embedding_module = TextEmbeddingModule(font_path=font_path, use_fp16=unet.dtype == torch.float16) | |
auxiliary_latent_module = AuxiliaryLatentModule(vae=vae) | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
if isinstance(controlnet, (list, tuple)): | |
controlnet = MultiControlNetModel(controlnet) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
controlnet=controlnet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
text_embedding_module=text_embedding_module, | |
auxiliary_latent_module=auxiliary_latent_module, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) | |
self.control_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | |
) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
def modify_prompt(self, prompt): | |
prompt = prompt.replace("“", '"') | |
prompt = prompt.replace("”", '"') | |
p = '"(.*?)"' | |
strs = re.findall(p, prompt) | |
if len(strs) == 0: | |
strs = [" "] | |
else: | |
for s in strs: | |
prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1) | |
if self.is_chinese(prompt): | |
if self.trans_pipe is None: | |
return None, None | |
old_prompt = prompt | |
prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1] | |
print(f"Translate: {old_prompt} --> {prompt}") | |
return prompt, strs | |
def is_chinese(self, text): | |
text = checker._clean_text(text) | |
for char in text: | |
cp = ord(char) | |
if checker._is_chinese_char(cp): | |
return True | |
return False | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if self.text_encoder is not None: | |
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
if output_hidden_states: | |
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_enc_hidden_states = self.image_encoder( | |
torch.zeros_like(image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
return image_enc_hidden_states, uncond_image_enc_hidden_states | |
else: | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds | |
def prepare_ip_adapter_image_embeds( | |
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | |
): | |
image_embeds = [] | |
if do_classifier_free_guidance: | |
negative_image_embeds = [] | |
if ip_adapter_image_embeds is None: | |
if not isinstance(ip_adapter_image, list): | |
ip_adapter_image = [ip_adapter_image] | |
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
raise ValueError( | |
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
) | |
for single_ip_adapter_image, image_proj_layer in zip( | |
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
): | |
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
single_image_embeds, single_negative_image_embeds = self.encode_image( | |
single_ip_adapter_image, device, 1, output_hidden_state | |
) | |
image_embeds.append(single_image_embeds[None, :]) | |
if do_classifier_free_guidance: | |
negative_image_embeds.append(single_negative_image_embeds[None, :]) | |
else: | |
for single_image_embeds in ip_adapter_image_embeds: | |
if do_classifier_free_guidance: | |
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | |
negative_image_embeds.append(single_negative_image_embeds) | |
image_embeds.append(single_image_embeds) | |
ip_adapter_image_embeds = [] | |
for i, single_image_embeds in enumerate(image_embeds): | |
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) | |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) | |
single_image_embeds = single_image_embeds.to(device=device) | |
ip_adapter_image_embeds.append(single_image_embeds) | |
return ip_adapter_image_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
# image, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
ip_adapter_image=None, | |
ip_adapter_image_embeds=None, | |
controlnet_conditioning_scale=1.0, | |
control_guidance_start=0.0, | |
control_guidance_end=1.0, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
# Check `image` | |
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
self.controlnet, torch._dynamo.eval_frame.OptimizedModule | |
) | |
# Check `controlnet_conditioning_scale` | |
if ( | |
isinstance(self.controlnet, ControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
): | |
if not isinstance(controlnet_conditioning_scale, float): | |
print(controlnet_conditioning_scale) | |
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | |
elif ( | |
isinstance(self.controlnet, MultiControlNetModel) | |
or is_compiled | |
and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
): | |
if isinstance(controlnet_conditioning_scale, list): | |
if any(isinstance(i, list) for i in controlnet_conditioning_scale): | |
raise ValueError( | |
"A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. " | |
"The conditioning scale must be fixed across the batch." | |
) | |
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | |
self.controlnet.nets | |
): | |
raise ValueError( | |
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | |
" the same length as the number of controlnets" | |
) | |
else: | |
assert False | |
if not isinstance(control_guidance_start, (tuple, list)): | |
control_guidance_start = [control_guidance_start] | |
if not isinstance(control_guidance_end, (tuple, list)): | |
control_guidance_end = [control_guidance_end] | |
if len(control_guidance_start) != len(control_guidance_end): | |
raise ValueError( | |
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | |
) | |
if isinstance(self.controlnet, MultiControlNetModel): | |
if len(control_guidance_start) != len(self.controlnet.nets): | |
raise ValueError( | |
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." | |
) | |
for start, end in zip(control_guidance_start, control_guidance_end): | |
if start >= end: | |
raise ValueError( | |
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | |
) | |
if start < 0.0: | |
raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | |
if end > 1.0: | |
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
raise ValueError( | |
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
) | |
if ip_adapter_image_embeds is not None: | |
if not isinstance(ip_adapter_image_embeds, list): | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | |
) | |
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | |
) | |
def check_image(self, image, prompt, prompt_embeds): | |
image_is_pil = isinstance(image, PIL.Image.Image) | |
image_is_tensor = isinstance(image, torch.Tensor) | |
image_is_np = isinstance(image, np.ndarray) | |
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
if ( | |
not image_is_pil | |
and not image_is_tensor | |
and not image_is_np | |
and not image_is_pil_list | |
and not image_is_tensor_list | |
and not image_is_np_list | |
): | |
raise TypeError( | |
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
) | |
if image_is_pil: | |
image_batch_size = 1 | |
else: | |
image_batch_size = len(image) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
def prepare_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
def get_guidance_scale_embedding( | |
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | |
) -> torch.Tensor: | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
w (`torch.Tensor`): | |
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. | |
embedding_dim (`int`, *optional*, defaults to 512): | |
Dimension of the embeddings to generate. | |
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): | |
Data type of the generated embeddings. | |
Returns: | |
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def guidance_scale(self): | |
return self._guidance_scale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
mode: Optional[str] = "generate", | |
draw_pos: Optional[Union[str, torch.Tensor]] = None, | |
ori_image: Optional[Union[str, torch.Tensor]] = None, | |
timesteps: List[int] = None, | |
sigmas: List[float] = None, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
guess_mode: bool = False, | |
control_guidance_start: Union[float, List[float]] = 0.0, | |
control_guidance_end: Union[float, List[float]] = 1.0, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted | |
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or | |
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, | |
images must be passed as a list such that each element of the list can be correctly batched for input | |
to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single | |
ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple | |
ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | |
the corresponding scale as a list. | |
guess_mode (`bool`, *optional*, defaults to `False`): | |
The ControlNet encoder tries to recognize the content of the input image even if you remove all | |
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. | |
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
The percentage of total steps at which the ControlNet starts applying. | |
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
The percentage of total steps at which the ControlNet stops applying. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
# align format for control guidance | |
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | |
control_guidance_start, control_guidance_end = ( | |
mult * [control_guidance_start], | |
mult * [control_guidance_end], | |
) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
# image, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
controlnet_conditioning_scale, | |
control_guidance_start, | |
control_guidance_end, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
global_pool_conditions = ( | |
controlnet.config.global_pool_conditions | |
if isinstance(controlnet, ControlNetModel) | |
else controlnet.nets[0].config.global_pool_conditions | |
) | |
guess_mode = guess_mode or global_pool_conditions | |
prompt, texts = self.modify_prompt(prompt) | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
draw_pos = draw_pos.to(device=device) if isinstance(draw_pos, torch.Tensor) else draw_pos | |
prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_embedding_module( | |
prompt, | |
texts, | |
negative_prompt, | |
num_images_per_prompt, | |
mode, | |
draw_pos, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 3.5 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 4. Prepare image | |
if isinstance(controlnet, ControlNetModel): | |
guided_hint = self.auxiliary_latent_module( | |
text_info=text_info, | |
mode=mode, | |
draw_pos=draw_pos, | |
ori_image=ori_image, | |
num_images_per_prompt=num_images_per_prompt, | |
np_hint=np_hint, | |
) | |
height, width = 512, 512 | |
else: | |
assert False | |
# 5. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas | |
) | |
self._num_timesteps = len(timesteps) | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
else None | |
) | |
# 7.2 Create tensor stating which controlnets to keep | |
controlnet_keep = [] | |
for i in range(len(timesteps)): | |
keeps = [ | |
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
for s, e in zip(control_guidance_start, control_guidance_end) | |
] | |
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
is_unet_compiled = is_compiled_module(self.unet) | |
is_controlnet_compiled = is_compiled_module(self.controlnet) | |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# Relevant thread: | |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: | |
torch._inductor.cudagraph_mark_step_begin() | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# controlnet(s) inference | |
if guess_mode and self.do_classifier_free_guidance: | |
# Infer ControlNet only for the conditional batch. | |
control_model_input = latents | |
control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
else: | |
control_model_input = latent_model_input | |
controlnet_prompt_embeds = prompt_embeds | |
if isinstance(controlnet_keep[i], list): | |
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
control_model_input.to(self.controlnet.dtype), | |
t, | |
encoder_hidden_states=controlnet_prompt_embeds, | |
controlnet_cond=guided_hint, | |
conditioning_scale=cond_scale, | |
guess_mode=guess_mode, | |
return_dict=False, | |
) | |
if guess_mode and self.do_classifier_free_guidance: | |
# Inferred ControlNet only for the conditional batch. | |
# To apply the output of ControlNet to both the unconditional and conditional batches, | |
# add 0 to the unconditional batch to keep it unchanged. | |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] | |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
down_block_additional_residuals=down_block_res_samples, | |
mid_block_additional_residual=mid_block_res_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# If we do sequential model offloading, let's offload unet and controlnet | |
# manually for max memory savings | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.unet.to("cpu") | |
self.controlnet.to("cpu") | |
torch.cuda.empty_cache() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | |
0 | |
] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def to(self, *args, **kwargs): | |
super().to(*args, **kwargs) | |
self.text_embedding_module.to(*args, **kwargs) | |
self.auxiliary_latent_module.to(*args, **kwargs) | |
return self | |