Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from typing import Optional, Union | |
from huggingface_hub.utils import validate_hf_hub_args | |
from ..configuration_utils import ConfigMixin | |
from ..utils import logging | |
logger = logging.get_logger(__name__) | |
class AutoModel(ConfigMixin): | |
config_name = "config.json" | |
def __init__(self, *args, **kwargs): | |
raise EnvironmentError( | |
f"{self.__class__.__name__} is designed to be instantiated " | |
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." | |
) | |
def from_pretrained(cls, pretrained_model_or_path: Optional[Union[str, os.PathLike]] = None, **kwargs): | |
r""" | |
Instantiate a pretrained PyTorch model from a pretrained model configuration. | |
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To | |
train the model, set it back in training mode with `model.train()`. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`~ModelMixin.save_pretrained`]. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
torch_dtype (`torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info (`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
from_flax (`bool`, *optional*, defaults to `False`): | |
Load the model weights from a Flax checkpoint save file. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
mirror (`str`, *optional*): | |
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not | |
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
information. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn't need to be defined for each | |
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
same device. Defaults to `None`, meaning that the model will be loaded on CPU. | |
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
max_memory (`Dict`, *optional*): | |
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
each GPU and the available CPU RAM if unset. | |
offload_folder (`str` or `os.PathLike`, *optional*): | |
The path to offload weights if `device_map` contains the value `"disk"`. | |
offload_state_dict (`bool`, *optional*): | |
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
when there is some disk offload. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
variant (`str`, *optional*): | |
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when | |
loading `from_flax`. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the | |
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors` | |
weights. If set to `False`, `safetensors` weights are not loaded. | |
disable_mmap ('bool', *optional*, defaults to 'False'): | |
Whether to disable mmap when loading a Safetensors model. This option can perform better when the model | |
is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well. | |
<Tip> | |
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with | |
`huggingface-cli login`. You can also activate the special | |
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a | |
firewalled environment. | |
</Tip> | |
Example: | |
```py | |
from diffusers import AutoModel | |
unet = AutoModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") | |
``` | |
If you get the error message below, you need to finetune the weights for your downstream task: | |
```bash | |
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
load_config_kwargs = { | |
"cache_dir": cache_dir, | |
"force_download": force_download, | |
"proxies": proxies, | |
"token": token, | |
"local_files_only": local_files_only, | |
"revision": revision, | |
} | |
library = None | |
orig_class_name = None | |
# Always attempt to fetch model_index.json first | |
try: | |
cls.config_name = "model_index.json" | |
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) | |
if subfolder is not None and subfolder in config: | |
library, orig_class_name = config[subfolder] | |
load_config_kwargs.update({"subfolder": subfolder}) | |
except EnvironmentError as e: | |
logger.debug(e) | |
# Unable to load from model_index.json so fallback to loading from config | |
if library is None and orig_class_name is None: | |
cls.config_name = "config.json" | |
config = cls.load_config(pretrained_model_or_path, subfolder=subfolder, **load_config_kwargs) | |
if "_class_name" in config: | |
# If we find a class name in the config, we can try to load the model as a diffusers model | |
orig_class_name = config["_class_name"] | |
library = "diffusers" | |
load_config_kwargs.update({"subfolder": subfolder}) | |
elif "model_type" in config: | |
orig_class_name = "AutoModel" | |
library = "transformers" | |
load_config_kwargs.update({"subfolder": "" if subfolder is None else subfolder}) | |
else: | |
raise ValueError(f"Couldn't find model associated with the config file at {pretrained_model_or_path}.") | |
from ..pipelines.pipeline_loading_utils import ALL_IMPORTABLE_CLASSES, get_class_obj_and_candidates | |
model_cls, _ = get_class_obj_and_candidates( | |
library_name=library, | |
class_name=orig_class_name, | |
importable_classes=ALL_IMPORTABLE_CLASSES, | |
pipelines=None, | |
is_pipeline_module=False, | |
) | |
if model_cls is None: | |
raise ValueError(f"AutoModel can't find a model linked to {orig_class_name}.") | |
kwargs = {**load_config_kwargs, **kwargs} | |
return model_cls.from_pretrained(pretrained_model_or_path, **kwargs) | |