multimodalart's picture
Upload 2025 files
22a452a verified
raw
history blame
11.4 kB
# # Copyright 2024 Sana-Sprint Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..schedulers.scheduling_utils import SchedulerMixin
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->SCM
class SCMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None
class SCMScheduler(SchedulerMixin, ConfigMixin):
"""
`SCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass
documentation for the generic methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
prediction_type (`str`, defaults to `trigflow`):
Prediction type of the scheduler function. Currently only supports "trigflow".
sigma_data (`float`, defaults to 0.5):
The standard deviation of the noise added during multi-step inference.
"""
# _compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
prediction_type: str = "trigflow",
sigma_data: float = 0.5,
):
"""
Initialize the SCM scheduler.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
prediction_type (`str`, defaults to `trigflow`):
Prediction type of the scheduler function. Currently only supports "trigflow".
sigma_data (`float`, defaults to 0.5):
The standard deviation of the noise added during multi-step inference.
"""
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
self._step_index = None
self._begin_index = None
@property
def step_index(self):
return self._step_index
@property
def begin_index(self):
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def set_timesteps(
self,
num_inference_steps: int,
timesteps: torch.Tensor = None,
device: Union[str, torch.device] = None,
max_timesteps: float = 1.57080,
intermediate_timesteps: float = 1.3,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
timesteps (`torch.Tensor`, *optional*):
Custom timesteps to use for the denoising process.
max_timesteps (`float`, defaults to 1.57080):
The maximum timestep value used in the SCM scheduler.
intermediate_timesteps (`float`, *optional*, defaults to 1.3):
The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2).
"""
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
if timesteps is not None and len(timesteps) != num_inference_steps + 1:
raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.")
if timesteps is not None and max_timesteps is not None:
raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.")
if timesteps is None and max_timesteps is None:
raise ValueError("Should provide either `timesteps` or `max_timesteps`.")
if intermediate_timesteps is not None and num_inference_steps != 2:
raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.")
self.num_inference_steps = num_inference_steps
if timesteps is not None:
if isinstance(timesteps, list):
self.timesteps = torch.tensor(timesteps, device=device).float()
elif isinstance(timesteps, torch.Tensor):
self.timesteps = timesteps.to(device).float()
else:
raise ValueError(f"Unsupported timesteps type: {type(timesteps)}")
elif intermediate_timesteps is not None:
self.timesteps = torch.tensor([max_timesteps, intermediate_timesteps, 0], device=device).float()
else:
# max_timesteps=arctan(80/0.5)=1.56454 is the default from sCM paper, we choose a different value here
self.timesteps = torch.linspace(max_timesteps, 0, num_inference_steps + 1, device=device).float()
print(f"Set timesteps: {self.timesteps}")
self._step_index = None
self._begin_index = None
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def step(
self,
model_output: torch.FloatTensor,
timestep: float,
sample: torch.FloatTensor,
generator: torch.Generator = None,
return_dict: bool = True,
) -> Union[SCMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_scm.SCMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SCMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_scm.SCMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
# 2. compute alphas, betas
t = self.timesteps[self.step_index + 1]
s = self.timesteps[self.step_index]
# 4. Different Parameterization:
parameterization = self.config.prediction_type
if parameterization == "trigflow":
pred_x0 = torch.cos(s) * sample - torch.sin(s) * model_output
else:
raise ValueError(f"Unsupported parameterization: {parameterization}")
# 5. Sample z ~ N(0, I), For MultiStep Inference
# Noise is not used for one-step sampling.
if len(self.timesteps) > 1:
noise = (
randn_tensor(model_output.shape, device=model_output.device, generator=generator)
* self.config.sigma_data
)
prev_sample = torch.cos(t) * pred_x0 + torch.sin(t) * noise
else:
prev_sample = pred_x0
self._step_index += 1
if not return_dict:
return (prev_sample, pred_x0)
return SCMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0)
def __len__(self):
return self.config.num_train_timesteps