Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from diffusers import AutoencoderKLMochi | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
torch_device, | |
) | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
enable_full_determinism() | |
class AutoencoderKLMochiTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = AutoencoderKLMochi | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def get_autoencoder_kl_mochi_config(self): | |
return { | |
"in_channels": 15, | |
"out_channels": 3, | |
"latent_channels": 4, | |
"encoder_block_out_channels": (32, 32, 32, 32), | |
"decoder_block_out_channels": (32, 32, 32, 32), | |
"layers_per_block": (1, 1, 1, 1, 1), | |
"act_fn": "silu", | |
"scaling_factor": 1, | |
} | |
def dummy_input(self): | |
batch_size = 2 | |
num_frames = 7 | |
num_channels = 3 | |
sizes = (16, 16) | |
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
return {"sample": image} | |
def input_shape(self): | |
return (3, 7, 16, 16) | |
def output_shape(self): | |
return (3, 7, 16, 16) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = self.get_autoencoder_kl_mochi_config() | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_gradient_checkpointing_is_applied(self): | |
expected_set = { | |
"MochiDecoder3D", | |
"MochiDownBlock3D", | |
"MochiEncoder3D", | |
"MochiMidBlock3D", | |
"MochiUpBlock3D", | |
} | |
super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
def test_forward_with_norm_groups(self): | |
""" | |
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_forward_with_norm_groups - | |
TypeError: AutoencoderKLMochi.__init__() got an unexpected keyword argument 'norm_num_groups' | |
""" | |
pass | |
def test_model_parallelism(self): | |
""" | |
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_outputs_equivalence - | |
RuntimeError: values expected sparse tensor layout but got Strided | |
""" | |
pass | |
def test_outputs_equivalence(self): | |
""" | |
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_outputs_equivalence - | |
RuntimeError: values expected sparse tensor layout but got Strided | |
""" | |
pass | |
def test_sharded_checkpoints_device_map(self): | |
""" | |
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_sharded_checkpoints_device_map - | |
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:5! | |
""" | |