multimodalart's picture
Upload 2025 files
22a452a verified
raw
history blame
4.69 kB
import gc
import unittest
import numpy as np
import torch
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
LuminaNextDiT2DModel,
LuminaPipeline,
)
from diffusers.utils.testing_utils import (
backend_empty_cache,
numpy_cosine_similarity_distance,
require_torch_accelerator,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin
class LuminaPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
pipeline_class = LuminaPipeline
params = frozenset(
[
"prompt",
"height",
"width",
"guidance_scale",
"negative_prompt",
"prompt_embeds",
"negative_prompt_embeds",
]
)
batch_params = frozenset(["prompt", "negative_prompt"])
supports_dduf = False
test_layerwise_casting = True
test_group_offloading = True
def get_dummy_components(self):
torch.manual_seed(0)
transformer = LuminaNextDiT2DModel(
sample_size=4,
patch_size=2,
in_channels=4,
hidden_size=4,
num_layers=2,
num_attention_heads=1,
num_kv_heads=1,
multiple_of=16,
ffn_dim_multiplier=None,
norm_eps=1e-5,
learn_sigma=True,
qk_norm=True,
cross_attention_dim=8,
scaling_factor=1.0,
)
torch.manual_seed(0)
vae = AutoencoderKL()
scheduler = FlowMatchEulerDiscreteScheduler()
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
torch.manual_seed(0)
config = GemmaConfig(
head_dim=2,
hidden_size=8,
intermediate_size=37,
num_attention_heads=4,
num_hidden_layers=2,
num_key_value_heads=4,
)
text_encoder = GemmaForCausalLM(config)
components = {
"transformer": transformer.eval(),
"vae": vae.eval(),
"scheduler": scheduler,
"text_encoder": text_encoder.eval(),
"tokenizer": tokenizer,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
}
return inputs
@unittest.skip("xformers attention processor does not exist for Lumina")
def test_xformers_attention_forwardGenerator_pass(self):
pass
@slow
@require_torch_accelerator
class LuminaPipelineSlowTests(unittest.TestCase):
pipeline_class = LuminaPipeline
repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers"
def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def get_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device="cpu").manual_seed(seed)
return {
"prompt": "A photo of a cat",
"num_inference_steps": 2,
"guidance_scale": 5.0,
"output_type": "np",
"generator": generator,
}
def test_lumina_inference(self):
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload(device=torch_device)
inputs = self.get_inputs(torch_device)
image = pipe(**inputs).images[0]
image_slice = image[0, :10, :10]
expected_slice = np.array(
[
[0.17773438, 0.18554688, 0.22070312],
[0.046875, 0.06640625, 0.10351562],
[0.0, 0.0, 0.02148438],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
],
dtype=np.float32,
)
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
assert max_diff < 1e-4