Spaces:
Running
on
Zero
Running
on
Zero
from typing import TYPE_CHECKING, Any, Dict, List, Union | |
from diffusers.utils.import_utils import is_optimum_quanto_version | |
from ...utils import ( | |
get_module_from_name, | |
is_accelerate_available, | |
is_accelerate_version, | |
is_optimum_quanto_available, | |
is_torch_available, | |
logging, | |
) | |
from ..base import DiffusersQuantizer | |
if TYPE_CHECKING: | |
from ...models.modeling_utils import ModelMixin | |
if is_torch_available(): | |
import torch | |
if is_accelerate_available(): | |
from accelerate.utils import CustomDtype, set_module_tensor_to_device | |
if is_optimum_quanto_available(): | |
from .utils import _replace_with_quanto_layers | |
logger = logging.get_logger(__name__) | |
class QuantoQuantizer(DiffusersQuantizer): | |
r""" | |
Diffusers Quantizer for Optimum Quanto | |
""" | |
use_keep_in_fp32_modules = True | |
requires_calibration = False | |
required_packages = ["quanto", "accelerate"] | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
def validate_environment(self, *args, **kwargs): | |
if not is_optimum_quanto_available(): | |
raise ImportError( | |
"Loading an optimum-quanto quantized model requires optimum-quanto library (`pip install optimum-quanto`)" | |
) | |
if not is_optimum_quanto_version(">=", "0.2.6"): | |
raise ImportError( | |
"Loading an optimum-quanto quantized model requires `optimum-quanto>=0.2.6`. " | |
"Please upgrade your installation with `pip install --upgrade optimum-quanto" | |
) | |
if not is_accelerate_available(): | |
raise ImportError( | |
"Loading an optimum-quanto quantized model requires accelerate library (`pip install accelerate`)" | |
) | |
device_map = kwargs.get("device_map", None) | |
if isinstance(device_map, dict) and len(device_map.keys()) > 1: | |
raise ValueError( | |
"`device_map` for multi-GPU inference or CPU/disk offload is currently not supported with Diffusers and the Quanto backend" | |
) | |
def check_if_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
): | |
# Quanto imports diffusers internally. This is here to prevent circular imports | |
from optimum.quanto import QModuleMixin, QTensor | |
from optimum.quanto.tensor.packed import PackedTensor | |
module, tensor_name = get_module_from_name(model, param_name) | |
if self.pre_quantized and any(isinstance(module, t) for t in [QTensor, PackedTensor]): | |
return True | |
elif isinstance(module, QModuleMixin) and "weight" in tensor_name: | |
return not module.frozen | |
return False | |
def create_quantized_param( | |
self, | |
model: "ModelMixin", | |
param_value: "torch.Tensor", | |
param_name: str, | |
target_device: "torch.device", | |
*args, | |
**kwargs, | |
): | |
""" | |
Create the quantized parameter by calling .freeze() after setting it to the module. | |
""" | |
dtype = kwargs.get("dtype", torch.float32) | |
module, tensor_name = get_module_from_name(model, param_name) | |
if self.pre_quantized: | |
setattr(module, tensor_name, param_value) | |
else: | |
set_module_tensor_to_device(model, param_name, target_device, param_value, dtype) | |
module.freeze() | |
module.weight.requires_grad = False | |
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: | |
max_memory = {key: val * 0.90 for key, val in max_memory.items()} | |
return max_memory | |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": | |
if is_accelerate_version(">=", "0.27.0"): | |
mapping = { | |
"int8": torch.int8, | |
"float8": CustomDtype.FP8, | |
"int4": CustomDtype.INT4, | |
"int2": CustomDtype.INT2, | |
} | |
target_dtype = mapping[self.quantization_config.weights_dtype] | |
return target_dtype | |
def update_torch_dtype(self, torch_dtype: "torch.dtype" = None) -> "torch.dtype": | |
if torch_dtype is None: | |
logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.") | |
torch_dtype = torch.float32 | |
return torch_dtype | |
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: | |
# Quanto imports diffusers internally. This is here to prevent circular imports | |
from optimum.quanto import QModuleMixin | |
not_missing_keys = [] | |
for name, module in model.named_modules(): | |
if isinstance(module, QModuleMixin): | |
for missing in missing_keys: | |
if ( | |
(name in missing or name in f"{prefix}.{missing}") | |
and not missing.endswith(".weight") | |
and not missing.endswith(".bias") | |
): | |
not_missing_keys.append(missing) | |
return [k for k in missing_keys if k not in not_missing_keys] | |
def _process_model_before_weight_loading( | |
self, | |
model: "ModelMixin", | |
device_map, | |
keep_in_fp32_modules: List[str] = [], | |
**kwargs, | |
): | |
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert | |
if not isinstance(self.modules_to_not_convert, list): | |
self.modules_to_not_convert = [self.modules_to_not_convert] | |
self.modules_to_not_convert.extend(keep_in_fp32_modules) | |
model = _replace_with_quanto_layers( | |
model, | |
modules_to_not_convert=self.modules_to_not_convert, | |
quantization_config=self.quantization_config, | |
pre_quantized=self.pre_quantized, | |
) | |
model.config.quantization_config = self.quantization_config | |
def _process_model_after_weight_loading(self, model, **kwargs): | |
return model | |
def is_trainable(self): | |
return True | |
def is_serializable(self): | |
return True | |