Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import List, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers.utils import BaseOutput, get_logger | |
logger = get_logger(__name__) | |
class CosmosPipelineOutput(BaseOutput): | |
r""" | |
Output class for Cosmos any-to-world/video pipelines. | |
Args: | |
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): | |
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing | |
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape | |
`(batch_size, num_frames, channels, height, width)`. | |
""" | |
frames: torch.Tensor | |
class CosmosImagePipelineOutput(BaseOutput): | |
""" | |
Output class for CogView3 pipelines. | |
Args: | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, | |
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. | |
""" | |
images: Union[List[PIL.Image.Image], np.ndarray] | |