Spaces:
Running
on
Zero
Running
on
Zero
Cosmos-Predict2
/
diffusers_repo
/src
/diffusers
/pipelines
/marigold
/pipeline_marigold_intrinsics.py
# Copyright 2023-2025 Marigold Team, ETH Zürich. All rights reserved. | |
# Copyright 2024-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# More information and citation instructions are available on the | |
# Marigold project website: https://marigoldcomputervision.github.io | |
# -------------------------------------------------------------------------- | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from ...image_processor import PipelineImageInput | |
from ...models import ( | |
AutoencoderKL, | |
UNet2DConditionModel, | |
) | |
from ...schedulers import ( | |
DDIMScheduler, | |
LCMScheduler, | |
) | |
from ...utils import ( | |
BaseOutput, | |
is_torch_xla_available, | |
logging, | |
replace_example_docstring, | |
) | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline | |
from .marigold_image_processing import MarigoldImageProcessor | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
import diffusers | |
import torch | |
pipe = diffusers.MarigoldIntrinsicsPipeline.from_pretrained( | |
"prs-eth/marigold-iid-appearance-v1-1", variant="fp16", torch_dtype=torch.float16 | |
).to("cuda") | |
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg") | |
intrinsics = pipe(image) | |
vis = pipe.image_processor.visualize_intrinsics(intrinsics.prediction, pipe.target_properties) | |
vis[0]["albedo"].save("einstein_albedo.png") | |
vis[0]["roughness"].save("einstein_roughness.png") | |
vis[0]["metallicity"].save("einstein_metallicity.png") | |
``` | |
```py | |
import diffusers | |
import torch | |
pipe = diffusers.MarigoldIntrinsicsPipeline.from_pretrained( | |
"prs-eth/marigold-iid-lighting-v1-1", variant="fp16", torch_dtype=torch.float16 | |
).to("cuda") | |
image = diffusers.utils.load_image("https://marigoldmonodepth.github.io/images/einstein.jpg") | |
intrinsics = pipe(image) | |
vis = pipe.image_processor.visualize_intrinsics(intrinsics.prediction, pipe.target_properties) | |
vis[0]["albedo"].save("einstein_albedo.png") | |
vis[0]["shading"].save("einstein_shading.png") | |
vis[0]["residual"].save("einstein_residual.png") | |
``` | |
""" | |
class MarigoldIntrinsicsOutput(BaseOutput): | |
""" | |
Output class for Marigold Intrinsic Image Decomposition pipeline. | |
Args: | |
prediction (`np.ndarray`, `torch.Tensor`): | |
Predicted image intrinsics with values in the range [0, 1]. The shape is $(numimages * numtargets) \times 3 | |
\times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times height \times width | |
\times 3$ for `np.ndarray`, where `numtargets` corresponds to the number of predicted target modalities of | |
the intrinsic image decomposition. | |
uncertainty (`None`, `np.ndarray`, `torch.Tensor`): | |
Uncertainty maps computed from the ensemble, with values in the range [0, 1]. The shape is $(numimages * | |
numtargets) \times 3 \times height \times width$ for `torch.Tensor` or $(numimages * numtargets) \times | |
height \times width \times 3$ for `np.ndarray`. | |
latent (`None`, `torch.Tensor`): | |
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline. | |
The shape is $(numimages * numensemble) \times (numtargets * 4) \times latentheight \times latentwidth$. | |
""" | |
prediction: Union[np.ndarray, torch.Tensor] | |
uncertainty: Union[None, np.ndarray, torch.Tensor] | |
latent: Union[None, torch.Tensor] | |
class MarigoldIntrinsicsPipeline(DiffusionPipeline): | |
""" | |
Pipeline for Intrinsic Image Decomposition (IID) using the Marigold method: | |
https://marigoldcomputervision.github.io. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
unet (`UNet2DConditionModel`): | |
Conditional U-Net to denoise the targets latent, conditioned on image latent. | |
vae (`AutoencoderKL`): | |
Variational Auto-Encoder (VAE) Model to encode and decode images and predictions to and from latent | |
representations. | |
scheduler (`DDIMScheduler` or `LCMScheduler`): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
text_encoder (`CLIPTextModel`): | |
Text-encoder, for empty text embedding. | |
tokenizer (`CLIPTokenizer`): | |
CLIP tokenizer. | |
prediction_type (`str`, *optional*): | |
Type of predictions made by the model. | |
target_properties (`Dict[str, Any]`, *optional*): | |
Properties of the predicted modalities, such as `target_names`, a `List[str]` used to define the number, | |
order and names of the predicted modalities, and any other metadata that may be required to interpret the | |
predictions. | |
default_denoising_steps (`int`, *optional*): | |
The minimum number of denoising diffusion steps that are required to produce a prediction of reasonable | |
quality with the given model. This value must be set in the model config. When the pipeline is called | |
without explicitly setting `num_inference_steps`, the default value is used. This is required to ensure | |
reasonable results with various model flavors compatible with the pipeline, such as those relying on very | |
short denoising schedules (`LCMScheduler`) and those with full diffusion schedules (`DDIMScheduler`). | |
default_processing_resolution (`int`, *optional*): | |
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in | |
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the | |
default value is used. This is required to ensure reasonable results with various model flavors trained | |
with varying optimal processing resolution values. | |
""" | |
model_cpu_offload_seq = "text_encoder->unet->vae" | |
supported_prediction_types = ("intrinsics",) | |
def __init__( | |
self, | |
unet: UNet2DConditionModel, | |
vae: AutoencoderKL, | |
scheduler: Union[DDIMScheduler, LCMScheduler], | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
prediction_type: Optional[str] = None, | |
target_properties: Optional[Dict[str, Any]] = None, | |
default_denoising_steps: Optional[int] = None, | |
default_processing_resolution: Optional[int] = None, | |
): | |
super().__init__() | |
if prediction_type not in self.supported_prediction_types: | |
logger.warning( | |
f"Potentially unsupported `prediction_type='{prediction_type}'`; values supported by the pipeline: " | |
f"{self.supported_prediction_types}." | |
) | |
self.register_modules( | |
unet=unet, | |
vae=vae, | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
) | |
self.register_to_config( | |
prediction_type=prediction_type, | |
target_properties=target_properties, | |
default_denoising_steps=default_denoising_steps, | |
default_processing_resolution=default_processing_resolution, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
self.target_properties = target_properties | |
self.default_denoising_steps = default_denoising_steps | |
self.default_processing_resolution = default_processing_resolution | |
self.empty_text_embedding = None | |
self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
def n_targets(self): | |
return self.unet.config.out_channels // self.vae.config.latent_channels | |
def check_inputs( | |
self, | |
image: PipelineImageInput, | |
num_inference_steps: int, | |
ensemble_size: int, | |
processing_resolution: int, | |
resample_method_input: str, | |
resample_method_output: str, | |
batch_size: int, | |
ensembling_kwargs: Optional[Dict[str, Any]], | |
latents: Optional[torch.Tensor], | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]], | |
output_type: str, | |
output_uncertainty: bool, | |
) -> int: | |
actual_vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
if actual_vae_scale_factor != self.vae_scale_factor: | |
raise ValueError( | |
f"`vae_scale_factor` computed at initialization ({self.vae_scale_factor}) differs from the actual one ({actual_vae_scale_factor})." | |
) | |
if num_inference_steps is None: | |
raise ValueError("`num_inference_steps` is not specified and could not be resolved from the model config.") | |
if num_inference_steps < 1: | |
raise ValueError("`num_inference_steps` must be positive.") | |
if ensemble_size < 1: | |
raise ValueError("`ensemble_size` must be positive.") | |
if ensemble_size == 2: | |
logger.warning( | |
"`ensemble_size` == 2 results are similar to no ensembling (1); " | |
"consider increasing the value to at least 3." | |
) | |
if ensemble_size == 1 and output_uncertainty: | |
raise ValueError( | |
"Computing uncertainty by setting `output_uncertainty=True` also requires setting `ensemble_size` " | |
"greater than 1." | |
) | |
if processing_resolution is None: | |
raise ValueError( | |
"`processing_resolution` is not specified and could not be resolved from the model config." | |
) | |
if processing_resolution < 0: | |
raise ValueError( | |
"`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for " | |
"downsampled processing." | |
) | |
if processing_resolution % self.vae_scale_factor != 0: | |
raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.") | |
if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"): | |
raise ValueError( | |
"`resample_method_input` takes string values compatible with PIL library: " | |
"nearest, nearest-exact, bilinear, bicubic, area." | |
) | |
if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"): | |
raise ValueError( | |
"`resample_method_output` takes string values compatible with PIL library: " | |
"nearest, nearest-exact, bilinear, bicubic, area." | |
) | |
if batch_size < 1: | |
raise ValueError("`batch_size` must be positive.") | |
if output_type not in ["pt", "np"]: | |
raise ValueError("`output_type` must be one of `pt` or `np`.") | |
if latents is not None and generator is not None: | |
raise ValueError("`latents` and `generator` cannot be used together.") | |
if ensembling_kwargs is not None: | |
if not isinstance(ensembling_kwargs, dict): | |
raise ValueError("`ensembling_kwargs` must be a dictionary.") | |
if "reduction" in ensembling_kwargs and ensembling_kwargs["reduction"] not in ("median", "mean"): | |
raise ValueError("`ensembling_kwargs['reduction']` can be either `'median'` or `'mean'`.") | |
# image checks | |
num_images = 0 | |
W, H = None, None | |
if not isinstance(image, list): | |
image = [image] | |
for i, img in enumerate(image): | |
if isinstance(img, np.ndarray) or torch.is_tensor(img): | |
if img.ndim not in (2, 3, 4): | |
raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.") | |
H_i, W_i = img.shape[-2:] | |
N_i = 1 | |
if img.ndim == 4: | |
N_i = img.shape[0] | |
elif isinstance(img, Image.Image): | |
W_i, H_i = img.size | |
N_i = 1 | |
else: | |
raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.") | |
if W is None: | |
W, H = W_i, H_i | |
elif (W, H) != (W_i, H_i): | |
raise ValueError( | |
f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}" | |
) | |
num_images += N_i | |
# latents checks | |
if latents is not None: | |
if not torch.is_tensor(latents): | |
raise ValueError("`latents` must be a torch.Tensor.") | |
if latents.dim() != 4: | |
raise ValueError(f"`latents` has unsupported dimensions or shape: {latents.shape}.") | |
if processing_resolution > 0: | |
max_orig = max(H, W) | |
new_H = H * processing_resolution // max_orig | |
new_W = W * processing_resolution // max_orig | |
if new_H == 0 or new_W == 0: | |
raise ValueError(f"Extreme aspect ratio of the input image: [{W} x {H}]") | |
W, H = new_W, new_H | |
w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor | |
h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor | |
shape_expected = (num_images * ensemble_size, self.unet.config.out_channels, h, w) | |
if latents.shape != shape_expected: | |
raise ValueError(f"`latents` has unexpected shape={latents.shape} expected={shape_expected}.") | |
# generator checks | |
if generator is not None: | |
if isinstance(generator, list): | |
if len(generator) != num_images * ensemble_size: | |
raise ValueError( | |
"The number of generators must match the total number of ensemble members for all input images." | |
) | |
if not all(g.device.type == generator[0].device.type for g in generator): | |
raise ValueError("`generator` device placement is not consistent in the list.") | |
elif not isinstance(generator, torch.Generator): | |
raise ValueError(f"Unsupported generator type: {type(generator)}.") | |
return num_images | |
def progress_bar(self, iterable=None, total=None, desc=None, leave=True): | |
if not hasattr(self, "_progress_bar_config"): | |
self._progress_bar_config = {} | |
elif not isinstance(self._progress_bar_config, dict): | |
raise ValueError( | |
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}." | |
) | |
progress_bar_config = dict(**self._progress_bar_config) | |
progress_bar_config["desc"] = progress_bar_config.get("desc", desc) | |
progress_bar_config["leave"] = progress_bar_config.get("leave", leave) | |
if iterable is not None: | |
return tqdm(iterable, **progress_bar_config) | |
elif total is not None: | |
return tqdm(total=total, **progress_bar_config) | |
else: | |
raise ValueError("Either `total` or `iterable` has to be defined.") | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
num_inference_steps: Optional[int] = None, | |
ensemble_size: int = 1, | |
processing_resolution: Optional[int] = None, | |
match_input_resolution: bool = True, | |
resample_method_input: str = "bilinear", | |
resample_method_output: str = "bilinear", | |
batch_size: int = 1, | |
ensembling_kwargs: Optional[Dict[str, Any]] = None, | |
latents: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: str = "np", | |
output_uncertainty: bool = False, | |
output_latent: bool = False, | |
return_dict: bool = True, | |
): | |
""" | |
Function invoked when calling the pipeline. | |
Args: | |
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`), | |
`List[torch.Tensor]`: An input image or images used as an input for the intrinsic decomposition task. | |
For arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is | |
possible by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or | |
three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the | |
same width and height. | |
num_inference_steps (`int`, *optional*, defaults to `None`): | |
Number of denoising diffusion steps during inference. The default value `None` results in automatic | |
selection. | |
ensemble_size (`int`, defaults to `1`): | |
Number of ensemble predictions. Higher values result in measurable improvements and visual degradation. | |
processing_resolution (`int`, *optional*, defaults to `None`): | |
Effective processing resolution. When set to `0`, matches the larger input image dimension. This | |
produces crisper predictions, but may also lead to the overall loss of global context. The default | |
value `None` resolves to the optimal value from the model config. | |
match_input_resolution (`bool`, *optional*, defaults to `True`): | |
When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer | |
side of the output will equal to `processing_resolution`. | |
resample_method_input (`str`, *optional*, defaults to `"bilinear"`): | |
Resampling method used to resize input images to `processing_resolution`. The accepted values are: | |
`"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`. | |
resample_method_output (`str`, *optional*, defaults to `"bilinear"`): | |
Resampling method used to resize output predictions to match the input resolution. The accepted values | |
are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`. | |
batch_size (`int`, *optional*, defaults to `1`): | |
Batch size; only matters when setting `ensemble_size` or passing a tensor of images. | |
ensembling_kwargs (`dict`, *optional*, defaults to `None`) | |
Extra dictionary with arguments for precise ensembling control. The following options are available: | |
- reduction (`str`, *optional*, defaults to `"median"`): Defines the ensembling function applied in | |
every pixel location, can be either `"median"` or `"mean"`. | |
latents (`torch.Tensor`, *optional*, defaults to `None`): | |
Latent noise tensors to replace the random initialization. These can be taken from the previous | |
function call's output. | |
generator (`torch.Generator`, or `List[torch.Generator]`, *optional*, defaults to `None`): | |
Random number generator object to ensure reproducibility. | |
output_type (`str`, *optional*, defaults to `"np"`): | |
Preferred format of the output's `prediction` and the optional `uncertainty` fields. The accepted | |
values are: `"np"` (numpy array) or `"pt"` (torch tensor). | |
output_uncertainty (`bool`, *optional*, defaults to `False`): | |
When enabled, the output's `uncertainty` field contains the predictive uncertainty map, provided that | |
the `ensemble_size` argument is set to a value above 2. | |
output_latent (`bool`, *optional*, defaults to `False`): | |
When enabled, the output's `latent` field contains the latent codes corresponding to the predictions | |
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the | |
`latents` argument. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.marigold.MarigoldIntrinsicsOutput`] instead of a plain tuple. | |
Examples: | |
Returns: | |
[`~pipelines.marigold.MarigoldIntrinsicsOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.marigold.MarigoldIntrinsicsOutput`] is returned, otherwise a | |
`tuple` is returned where the first element is the prediction, the second element is the uncertainty | |
(or `None`), and the third is the latent (or `None`). | |
""" | |
# 0. Resolving variables. | |
device = self._execution_device | |
dtype = self.dtype | |
# Model-specific optimal default values leading to fast and reasonable results. | |
if num_inference_steps is None: | |
num_inference_steps = self.default_denoising_steps | |
if processing_resolution is None: | |
processing_resolution = self.default_processing_resolution | |
# 1. Check inputs. | |
num_images = self.check_inputs( | |
image, | |
num_inference_steps, | |
ensemble_size, | |
processing_resolution, | |
resample_method_input, | |
resample_method_output, | |
batch_size, | |
ensembling_kwargs, | |
latents, | |
generator, | |
output_type, | |
output_uncertainty, | |
) | |
# 2. Prepare empty text conditioning. | |
# Model invocation: self.tokenizer, self.text_encoder. | |
if self.empty_text_embedding is None: | |
prompt = "" | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="do_not_pad", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids.to(device) | |
self.empty_text_embedding = self.text_encoder(text_input_ids)[0] # [1,2,1024] | |
# 3. Preprocess input images. This function loads input image or images of compatible dimensions `(H, W)`, | |
# optionally downsamples them to the `processing_resolution` `(PH, PW)`, where | |
# `max(PH, PW) == processing_resolution`, and pads the dimensions to `(PPH, PPW)` such that these values are | |
# divisible by the latent space downscaling factor (typically 8 in Stable Diffusion). The default value `None` | |
# of `processing_resolution` resolves to the optimal value from the model config. It is a recommended mode of | |
# operation and leads to the most reasonable results. Using the native image resolution or any other processing | |
# resolution can lead to loss of either fine details or global context in the output predictions. | |
image, padding, original_resolution = self.image_processor.preprocess( | |
image, processing_resolution, resample_method_input, device, dtype | |
) # [N,3,PPH,PPW] | |
# 4. Encode input image into latent space. At this step, each of the `N` input images is represented with `E` | |
# ensemble members. Each ensemble member is an independent diffused prediction, just initialized independently. | |
# Latents of each such predictions across all input images and all ensemble members are represented in the | |
# `pred_latent` variable. The variable `image_latent` contains each input image encoded into latent space and | |
# replicated `E` times. The variable `pred_latent` contains latents initialization, where the latent space is | |
# replicated `T` times relative to the single latent space of `image_latent`, where `T` is the number of the | |
# predicted targets. The latents can be either generated (see `generator` to ensure reproducibility), or passed | |
# explicitly via the `latents` argument. The latter can be set outside the pipeline code. This behavior can be | |
# achieved by setting the `output_latent` argument to `True`. The latent space dimensions are `(h, w)`. Encoding | |
# into latent space happens in batches of size `batch_size`. | |
# Model invocation: self.vae.encoder. | |
image_latent, pred_latent = self.prepare_latents( | |
image, latents, generator, ensemble_size, batch_size | |
) # [N*E,4,h,w], [N*E,T*4,h,w] | |
del image | |
batch_empty_text_embedding = self.empty_text_embedding.to(device=device, dtype=dtype).repeat( | |
batch_size, 1, 1 | |
) # [B,1024,2] | |
# 5. Process the denoising loop. All `N * E` latents are processed sequentially in batches of size `batch_size`. | |
# The unet model takes concatenated latent spaces of the input image and the predicted modality as an input, and | |
# outputs noise for the predicted modality's latent space. The number of denoising diffusion steps is defined by | |
# `num_inference_steps`. It is either set directly, or resolves to the optimal value specific to the loaded | |
# model. | |
# Model invocation: self.unet. | |
pred_latents = [] | |
for i in self.progress_bar( | |
range(0, num_images * ensemble_size, batch_size), leave=True, desc="Marigold predictions..." | |
): | |
batch_image_latent = image_latent[i : i + batch_size] # [B,4,h,w] | |
batch_pred_latent = pred_latent[i : i + batch_size] # [B,T*4,h,w] | |
effective_batch_size = batch_image_latent.shape[0] | |
text = batch_empty_text_embedding[:effective_batch_size] # [B,2,1024] | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
for t in self.progress_bar(self.scheduler.timesteps, leave=False, desc="Diffusion steps..."): | |
batch_latent = torch.cat([batch_image_latent, batch_pred_latent], dim=1) # [B,(1+T)*4,h,w] | |
noise = self.unet(batch_latent, t, encoder_hidden_states=text, return_dict=False)[0] # [B,T*4,h,w] | |
batch_pred_latent = self.scheduler.step( | |
noise, t, batch_pred_latent, generator=generator | |
).prev_sample # [B,T*4,h,w] | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
pred_latents.append(batch_pred_latent) | |
pred_latent = torch.cat(pred_latents, dim=0) # [N*E,T*4,h,w] | |
del ( | |
pred_latents, | |
image_latent, | |
batch_empty_text_embedding, | |
batch_image_latent, | |
batch_pred_latent, | |
text, | |
batch_latent, | |
noise, | |
) | |
# 6. Decode predictions from latent into pixel space. The resulting `N * E` predictions have shape `(PPH, PPW)`, | |
# which requires slight postprocessing. Decoding into pixel space happens in batches of size `batch_size`. | |
# Model invocation: self.vae.decoder. | |
pred_latent_for_decoding = pred_latent.reshape( | |
num_images * ensemble_size * self.n_targets, self.vae.config.latent_channels, *pred_latent.shape[2:] | |
) # [N*E*T,4,PPH,PPW] | |
prediction = torch.cat( | |
[ | |
self.decode_prediction(pred_latent_for_decoding[i : i + batch_size]) | |
for i in range(0, pred_latent_for_decoding.shape[0], batch_size) | |
], | |
dim=0, | |
) # [N*E*T,3,PPH,PPW] | |
del pred_latent_for_decoding | |
if not output_latent: | |
pred_latent = None | |
# 7. Remove padding. The output shape is (PH, PW). | |
prediction = self.image_processor.unpad_image(prediction, padding) # [N*E*T,3,PH,PW] | |
# 8. Ensemble and compute uncertainty (when `output_uncertainty` is set). This code treats each of the `N*T` | |
# groups of `E` ensemble predictions independently. For each group it computes an ensembled prediction of shape | |
# `(PH, PW)` and an optional uncertainty map of the same dimensions. After computing this pair of outputs for | |
# each group independently, it stacks them respectively into batches of `N*T` almost final predictions and | |
# uncertainty maps. | |
uncertainty = None | |
if ensemble_size > 1: | |
prediction = prediction.reshape( | |
num_images, ensemble_size, self.n_targets, *prediction.shape[1:] | |
) # [N,E,T,3,PH,PW] | |
prediction = [ | |
self.ensemble_intrinsics(prediction[i], output_uncertainty, **(ensembling_kwargs or {})) | |
for i in range(num_images) | |
] # [ [[T,3,PH,PW], [T,3,PH,PW]], ... ] | |
prediction, uncertainty = zip(*prediction) # [[T,3,PH,PW], ... ], [[T,3,PH,PW], ... ] | |
prediction = torch.cat(prediction, dim=0) # [N*T,3,PH,PW] | |
if output_uncertainty: | |
uncertainty = torch.cat(uncertainty, dim=0) # [N*T,3,PH,PW] | |
else: | |
uncertainty = None | |
# 9. If `match_input_resolution` is set, the output prediction and the uncertainty are upsampled to match the | |
# input resolution `(H, W)`. This step may introduce upsampling artifacts, and therefore can be disabled. | |
# Depending on the downstream use-case, upsampling can be also chosen based on the tolerated artifacts by | |
# setting the `resample_method_output` parameter (e.g., to `"nearest"`). | |
if match_input_resolution: | |
prediction = self.image_processor.resize_antialias( | |
prediction, original_resolution, resample_method_output, is_aa=False | |
) # [N*T,3,H,W] | |
if uncertainty is not None and output_uncertainty: | |
uncertainty = self.image_processor.resize_antialias( | |
uncertainty, original_resolution, resample_method_output, is_aa=False | |
) # [N*T,1,H,W] | |
# 10. Prepare the final outputs. | |
if output_type == "np": | |
prediction = self.image_processor.pt_to_numpy(prediction) # [N*T,H,W,3] | |
if uncertainty is not None and output_uncertainty: | |
uncertainty = self.image_processor.pt_to_numpy(uncertainty) # [N*T,H,W,3] | |
# 11. Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (prediction, uncertainty, pred_latent) | |
return MarigoldIntrinsicsOutput( | |
prediction=prediction, | |
uncertainty=uncertainty, | |
latent=pred_latent, | |
) | |
def prepare_latents( | |
self, | |
image: torch.Tensor, | |
latents: Optional[torch.Tensor], | |
generator: Optional[torch.Generator], | |
ensemble_size: int, | |
batch_size: int, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
def retrieve_latents(encoder_output): | |
if hasattr(encoder_output, "latent_dist"): | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
image_latent = torch.cat( | |
[ | |
retrieve_latents(self.vae.encode(image[i : i + batch_size])) | |
for i in range(0, image.shape[0], batch_size) | |
], | |
dim=0, | |
) # [N,4,h,w] | |
image_latent = image_latent * self.vae.config.scaling_factor | |
image_latent = image_latent.repeat_interleave(ensemble_size, dim=0) # [N*E,4,h,w] | |
N_E, C, H, W = image_latent.shape | |
pred_latent = latents | |
if pred_latent is None: | |
pred_latent = randn_tensor( | |
(N_E, self.n_targets * C, H, W), | |
generator=generator, | |
device=image_latent.device, | |
dtype=image_latent.dtype, | |
) # [N*E,T*4,h,w] | |
return image_latent, pred_latent | |
def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor: | |
if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels: | |
raise ValueError( | |
f"Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}." | |
) | |
prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0] # [B,3,H,W] | |
prediction = torch.clip(prediction, -1.0, 1.0) # [B,3,H,W] | |
prediction = (prediction + 1.0) / 2.0 | |
return prediction # [B,3,H,W] | |
def ensemble_intrinsics( | |
targets: torch.Tensor, | |
output_uncertainty: bool = False, | |
reduction: str = "median", | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
""" | |
Ensembles the intrinsic decomposition represented by the `targets` tensor with expected shape `(B, T, 3, H, | |
W)`, where B is the number of ensemble members for a given prediction of size `(H x W)`, and T is the number of | |
predicted targets. | |
Args: | |
targets (`torch.Tensor`): | |
Input ensemble of intrinsic image decomposition maps. | |
output_uncertainty (`bool`, *optional*, defaults to `False`): | |
Whether to output uncertainty map. | |
reduction (`str`, *optional*, defaults to `"mean"`): | |
Reduction method used to ensemble aligned predictions. The accepted values are: `"median"` and | |
`"mean"`. | |
Returns: | |
A tensor of aligned and ensembled intrinsic decomposition maps with shape `(T, 3, H, W)` and optionally a | |
tensor of uncertainties of shape `(T, 3, H, W)`. | |
""" | |
if targets.dim() != 5 or targets.shape[2] != 3: | |
raise ValueError(f"Expecting 4D tensor of shape [B,T,3,H,W]; got {targets.shape}.") | |
if reduction not in ("median", "mean"): | |
raise ValueError(f"Unrecognized reduction method: {reduction}.") | |
B, T, _, H, W = targets.shape | |
uncertainty = None | |
if reduction == "mean": | |
prediction = torch.mean(targets, dim=0) # [T,3,H,W] | |
if output_uncertainty: | |
uncertainty = torch.std(targets, dim=0) # [T,3,H,W] | |
elif reduction == "median": | |
prediction = torch.median(targets, dim=0, keepdim=True).values # [1,T,3,H,W] | |
if output_uncertainty: | |
uncertainty = torch.abs(targets - prediction) # [B,T,3,H,W] | |
uncertainty = torch.median(uncertainty, dim=0).values # [T,3,H,W] | |
prediction = prediction.squeeze(0) # [T,3,H,W] | |
else: | |
raise ValueError(f"Unrecognized reduction method: {reduction}.") | |
return prediction, uncertainty | |