Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import AutoencoderKLLTXVideo, LTXLatentUpsamplePipeline | |
from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel | |
from diffusers.utils.testing_utils import enable_full_determinism | |
from ..test_pipelines_common import PipelineTesterMixin, to_np | |
enable_full_determinism() | |
class LTXLatentUpsamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = LTXLatentUpsamplePipeline | |
params = {"video", "generator"} | |
batch_params = {"video", "generator"} | |
required_optional_params = frozenset(["generator", "latents", "return_dict"]) | |
test_xformers_attention = False | |
supports_dduf = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
vae = AutoencoderKLLTXVideo( | |
in_channels=3, | |
out_channels=3, | |
latent_channels=8, | |
block_out_channels=(8, 8, 8, 8), | |
decoder_block_out_channels=(8, 8, 8, 8), | |
layers_per_block=(1, 1, 1, 1, 1), | |
decoder_layers_per_block=(1, 1, 1, 1, 1), | |
spatio_temporal_scaling=(True, True, False, False), | |
decoder_spatio_temporal_scaling=(True, True, False, False), | |
decoder_inject_noise=(False, False, False, False, False), | |
upsample_residual=(False, False, False, False), | |
upsample_factor=(1, 1, 1, 1), | |
timestep_conditioning=False, | |
patch_size=1, | |
patch_size_t=1, | |
encoder_causal=True, | |
decoder_causal=False, | |
) | |
vae.use_framewise_encoding = False | |
vae.use_framewise_decoding = False | |
torch.manual_seed(0) | |
latent_upsampler = LTXLatentUpsamplerModel( | |
in_channels=8, | |
mid_channels=32, | |
num_blocks_per_stage=1, | |
dims=3, | |
spatial_upsample=True, | |
temporal_upsample=False, | |
) | |
components = { | |
"vae": vae, | |
"latent_upsampler": latent_upsampler, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
video = torch.randn((5, 3, 32, 32), generator=generator, device=device) | |
inputs = { | |
"video": video, | |
"generator": generator, | |
"height": 16, | |
"width": 16, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
video = pipe(**inputs).frames | |
generated_video = video[0] | |
self.assertEqual(generated_video.shape, (5, 3, 32, 32)) | |
expected_video = torch.randn(5, 3, 32, 32) | |
max_diff = np.abs(generated_video - expected_video).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_vae_tiling(self, expected_diff_max: float = 0.25): | |
generator_device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to("cpu") | |
pipe.set_progress_bar_config(disable=None) | |
# Without tiling | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_without_tiling = pipe(**inputs)[0] | |
# With tiling | |
pipe.vae.enable_tiling( | |
tile_sample_min_height=96, | |
tile_sample_min_width=96, | |
tile_sample_stride_height=64, | |
tile_sample_stride_width=64, | |
) | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_with_tiling = pipe(**inputs)[0] | |
self.assertLess( | |
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
expected_diff_max, | |
"VAE tiling should not affect the inference results", | |
) | |
def test_callback_inputs(self): | |
pass | |
def test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
pass | |
def test_inference_batch_consistent(self): | |
pass | |
def test_inference_batch_single_identical(self): | |
pass | |