Spaces:
Running
on
Zero
Running
on
Zero
from torch import nn | |
class CTCHead(nn.Module): | |
def __init__( | |
self, in_channels, out_channels=6625, fc_decay=0.0004, mid_channels=None, return_feats=False, **kwargs | |
): | |
super(CTCHead, self).__init__() | |
if mid_channels is None: | |
self.fc = nn.Linear( | |
in_channels, | |
out_channels, | |
bias=True, | |
) | |
else: | |
self.fc1 = nn.Linear( | |
in_channels, | |
mid_channels, | |
bias=True, | |
) | |
self.fc2 = nn.Linear( | |
mid_channels, | |
out_channels, | |
bias=True, | |
) | |
self.out_channels = out_channels | |
self.mid_channels = mid_channels | |
self.return_feats = return_feats | |
def forward(self, x, labels=None): | |
if self.mid_channels is None: | |
predicts = self.fc(x) | |
else: | |
x = self.fc1(x) | |
predicts = self.fc2(x) | |
if self.return_feats: | |
result = {} | |
result["ctc"] = predicts | |
result["ctc_neck"] = x | |
else: | |
result = predicts | |
return result | |