Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...loaders import FromOriginalModelMixin | |
from ...utils import logging | |
from ...utils.accelerate_utils import apply_forward_hook | |
from ..activations import get_activation | |
from ..modeling_outputs import AutoencoderKLOutput | |
from ..modeling_utils import ModelMixin | |
from .vae import DecoderOutput, DiagonalGaussianDistribution | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
CACHE_T = 2 | |
class WanCausalConv3d(nn.Conv3d): | |
r""" | |
A custom 3D causal convolution layer with feature caching support. | |
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature | |
caching for efficient inference. | |
Args: | |
in_channels (int): Number of channels in the input image | |
out_channels (int): Number of channels produced by the convolution | |
kernel_size (int or tuple): Size of the convolving kernel | |
stride (int or tuple, optional): Stride of the convolution. Default: 1 | |
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0 | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int, int]], | |
stride: Union[int, Tuple[int, int, int]] = 1, | |
padding: Union[int, Tuple[int, int, int]] = 0, | |
) -> None: | |
super().__init__( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
) | |
# Set up causal padding | |
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0) | |
self.padding = (0, 0, 0) | |
def forward(self, x, cache_x=None): | |
padding = list(self._padding) | |
if cache_x is not None and self._padding[4] > 0: | |
cache_x = cache_x.to(x.device) | |
x = torch.cat([cache_x, x], dim=2) | |
padding[4] -= cache_x.shape[2] | |
x = F.pad(x, padding) | |
return super().forward(x) | |
class WanRMS_norm(nn.Module): | |
r""" | |
A custom RMS normalization layer. | |
Args: | |
dim (int): The number of dimensions to normalize over. | |
channel_first (bool, optional): Whether the input tensor has channels as the first dimension. | |
Default is True. | |
images (bool, optional): Whether the input represents image data. Default is True. | |
bias (bool, optional): Whether to include a learnable bias term. Default is False. | |
""" | |
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None: | |
super().__init__() | |
broadcastable_dims = (1, 1, 1) if not images else (1, 1) | |
shape = (dim, *broadcastable_dims) if channel_first else (dim,) | |
self.channel_first = channel_first | |
self.scale = dim**0.5 | |
self.gamma = nn.Parameter(torch.ones(shape)) | |
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0 | |
def forward(self, x): | |
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias | |
class WanUpsample(nn.Upsample): | |
r""" | |
Perform upsampling while ensuring the output tensor has the same data type as the input. | |
Args: | |
x (torch.Tensor): Input tensor to be upsampled. | |
Returns: | |
torch.Tensor: Upsampled tensor with the same data type as the input. | |
""" | |
def forward(self, x): | |
return super().forward(x.float()).type_as(x) | |
class WanResample(nn.Module): | |
r""" | |
A custom resampling module for 2D and 3D data. | |
Args: | |
dim (int): The number of input/output channels. | |
mode (str): The resampling mode. Must be one of: | |
- 'none': No resampling (identity operation). | |
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution. | |
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution. | |
- 'downsample2d': 2D downsampling with zero-padding and convolution. | |
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution. | |
""" | |
def __init__(self, dim: int, mode: str) -> None: | |
super().__init__() | |
self.dim = dim | |
self.mode = mode | |
# layers | |
if mode == "upsample2d": | |
self.resample = nn.Sequential( | |
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1) | |
) | |
elif mode == "upsample3d": | |
self.resample = nn.Sequential( | |
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1) | |
) | |
self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) | |
elif mode == "downsample2d": | |
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) | |
elif mode == "downsample3d": | |
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) | |
self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) | |
else: | |
self.resample = nn.Identity() | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
b, c, t, h, w = x.size() | |
if self.mode == "upsample3d": | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
if feat_cache[idx] is None: | |
feat_cache[idx] = "Rep" | |
feat_idx[0] += 1 | |
else: | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep": | |
# cache last frame of last two chunk | |
cache_x = torch.cat( | |
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2 | |
) | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep": | |
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2) | |
if feat_cache[idx] == "Rep": | |
x = self.time_conv(x) | |
else: | |
x = self.time_conv(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
x = x.reshape(b, 2, c, t, h, w) | |
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3) | |
x = x.reshape(b, c, t * 2, h, w) | |
t = x.shape[2] | |
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) | |
x = self.resample(x) | |
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4) | |
if self.mode == "downsample3d": | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
if feat_cache[idx] is None: | |
feat_cache[idx] = x.clone() | |
feat_idx[0] += 1 | |
else: | |
cache_x = x[:, :, -1:, :, :].clone() | |
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
return x | |
class WanResidualBlock(nn.Module): | |
r""" | |
A custom residual block module. | |
Args: | |
in_dim (int): Number of input channels. | |
out_dim (int): Number of output channels. | |
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0. | |
non_linearity (str, optional): Type of non-linearity to use. Default is "silu". | |
""" | |
def __init__( | |
self, | |
in_dim: int, | |
out_dim: int, | |
dropout: float = 0.0, | |
non_linearity: str = "silu", | |
) -> None: | |
super().__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.nonlinearity = get_activation(non_linearity) | |
# layers | |
self.norm1 = WanRMS_norm(in_dim, images=False) | |
self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1) | |
self.norm2 = WanRMS_norm(out_dim, images=False) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1) | |
self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity() | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
# Apply shortcut connection | |
h = self.conv_shortcut(x) | |
# First normalization and activation | |
x = self.norm1(x) | |
x = self.nonlinearity(x) | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) | |
x = self.conv1(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv1(x) | |
# Second normalization and activation | |
x = self.norm2(x) | |
x = self.nonlinearity(x) | |
# Dropout | |
x = self.dropout(x) | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) | |
x = self.conv2(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv2(x) | |
# Add residual connection | |
return x + h | |
class WanAttentionBlock(nn.Module): | |
r""" | |
Causal self-attention with a single head. | |
Args: | |
dim (int): The number of channels in the input tensor. | |
""" | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
# layers | |
self.norm = WanRMS_norm(dim) | |
self.to_qkv = nn.Conv2d(dim, dim * 3, 1) | |
self.proj = nn.Conv2d(dim, dim, 1) | |
def forward(self, x): | |
identity = x | |
batch_size, channels, time, height, width = x.size() | |
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width) | |
x = self.norm(x) | |
# compute query, key, value | |
qkv = self.to_qkv(x) | |
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1) | |
qkv = qkv.permute(0, 1, 3, 2).contiguous() | |
q, k, v = qkv.chunk(3, dim=-1) | |
# apply attention | |
x = F.scaled_dot_product_attention(q, k, v) | |
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width) | |
# output projection | |
x = self.proj(x) | |
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w] | |
x = x.view(batch_size, time, channels, height, width) | |
x = x.permute(0, 2, 1, 3, 4) | |
return x + identity | |
class WanMidBlock(nn.Module): | |
""" | |
Middle block for WanVAE encoder and decoder. | |
Args: | |
dim (int): Number of input/output channels. | |
dropout (float): Dropout rate. | |
non_linearity (str): Type of non-linearity to use. | |
""" | |
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1): | |
super().__init__() | |
self.dim = dim | |
# Create the components | |
resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)] | |
attentions = [] | |
for _ in range(num_layers): | |
attentions.append(WanAttentionBlock(dim)) | |
resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity)) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.gradient_checkpointing = False | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
# First residual block | |
x = self.resnets[0](x, feat_cache, feat_idx) | |
# Process through attention and residual blocks | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if attn is not None: | |
x = attn(x) | |
x = resnet(x, feat_cache, feat_idx) | |
return x | |
class WanEncoder3d(nn.Module): | |
r""" | |
A 3D encoder module. | |
Args: | |
dim (int): The base number of channels in the first layer. | |
z_dim (int): The dimensionality of the latent space. | |
dim_mult (list of int): Multipliers for the number of channels in each block. | |
num_res_blocks (int): Number of residual blocks in each block. | |
attn_scales (list of float): Scales at which to apply attention mechanisms. | |
temperal_downsample (list of bool): Whether to downsample temporally in each block. | |
dropout (float): Dropout rate for the dropout layers. | |
non_linearity (str): Type of non-linearity to use. | |
""" | |
def __init__( | |
self, | |
dim=128, | |
z_dim=4, | |
dim_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
attn_scales=[], | |
temperal_downsample=[True, True, False], | |
dropout=0.0, | |
non_linearity: str = "silu", | |
): | |
super().__init__() | |
self.dim = dim | |
self.z_dim = z_dim | |
self.dim_mult = dim_mult | |
self.num_res_blocks = num_res_blocks | |
self.attn_scales = attn_scales | |
self.temperal_downsample = temperal_downsample | |
self.nonlinearity = get_activation(non_linearity) | |
# dimensions | |
dims = [dim * u for u in [1] + dim_mult] | |
scale = 1.0 | |
# init block | |
self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1) | |
# downsample blocks | |
self.down_blocks = nn.ModuleList([]) | |
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): | |
# residual (+attention) blocks | |
for _ in range(num_res_blocks): | |
self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout)) | |
if scale in attn_scales: | |
self.down_blocks.append(WanAttentionBlock(out_dim)) | |
in_dim = out_dim | |
# downsample block | |
if i != len(dim_mult) - 1: | |
mode = "downsample3d" if temperal_downsample[i] else "downsample2d" | |
self.down_blocks.append(WanResample(out_dim, mode=mode)) | |
scale /= 2.0 | |
# middle blocks | |
self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1) | |
# output blocks | |
self.norm_out = WanRMS_norm(out_dim, images=False) | |
self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1) | |
self.gradient_checkpointing = False | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) | |
x = self.conv_in(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv_in(x) | |
## downsamples | |
for layer in self.down_blocks: | |
if feat_cache is not None: | |
x = layer(x, feat_cache, feat_idx) | |
else: | |
x = layer(x) | |
## middle | |
x = self.mid_block(x, feat_cache, feat_idx) | |
## head | |
x = self.norm_out(x) | |
x = self.nonlinearity(x) | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) | |
x = self.conv_out(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv_out(x) | |
return x | |
class WanUpBlock(nn.Module): | |
""" | |
A block that handles upsampling for the WanVAE decoder. | |
Args: | |
in_dim (int): Input dimension | |
out_dim (int): Output dimension | |
num_res_blocks (int): Number of residual blocks | |
dropout (float): Dropout rate | |
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d') | |
non_linearity (str): Type of non-linearity to use | |
""" | |
def __init__( | |
self, | |
in_dim: int, | |
out_dim: int, | |
num_res_blocks: int, | |
dropout: float = 0.0, | |
upsample_mode: Optional[str] = None, | |
non_linearity: str = "silu", | |
): | |
super().__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
# Create layers list | |
resnets = [] | |
# Add residual blocks and attention if needed | |
current_dim = in_dim | |
for _ in range(num_res_blocks + 1): | |
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity)) | |
current_dim = out_dim | |
self.resnets = nn.ModuleList(resnets) | |
# Add upsampling layer if needed | |
self.upsamplers = None | |
if upsample_mode is not None: | |
self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)]) | |
self.gradient_checkpointing = False | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
""" | |
Forward pass through the upsampling block. | |
Args: | |
x (torch.Tensor): Input tensor | |
feat_cache (list, optional): Feature cache for causal convolutions | |
feat_idx (list, optional): Feature index for cache management | |
Returns: | |
torch.Tensor: Output tensor | |
""" | |
for resnet in self.resnets: | |
if feat_cache is not None: | |
x = resnet(x, feat_cache, feat_idx) | |
else: | |
x = resnet(x) | |
if self.upsamplers is not None: | |
if feat_cache is not None: | |
x = self.upsamplers[0](x, feat_cache, feat_idx) | |
else: | |
x = self.upsamplers[0](x) | |
return x | |
class WanDecoder3d(nn.Module): | |
r""" | |
A 3D decoder module. | |
Args: | |
dim (int): The base number of channels in the first layer. | |
z_dim (int): The dimensionality of the latent space. | |
dim_mult (list of int): Multipliers for the number of channels in each block. | |
num_res_blocks (int): Number of residual blocks in each block. | |
attn_scales (list of float): Scales at which to apply attention mechanisms. | |
temperal_upsample (list of bool): Whether to upsample temporally in each block. | |
dropout (float): Dropout rate for the dropout layers. | |
non_linearity (str): Type of non-linearity to use. | |
""" | |
def __init__( | |
self, | |
dim=128, | |
z_dim=4, | |
dim_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
attn_scales=[], | |
temperal_upsample=[False, True, True], | |
dropout=0.0, | |
non_linearity: str = "silu", | |
): | |
super().__init__() | |
self.dim = dim | |
self.z_dim = z_dim | |
self.dim_mult = dim_mult | |
self.num_res_blocks = num_res_blocks | |
self.attn_scales = attn_scales | |
self.temperal_upsample = temperal_upsample | |
self.nonlinearity = get_activation(non_linearity) | |
# dimensions | |
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] | |
scale = 1.0 / 2 ** (len(dim_mult) - 2) | |
# init block | |
self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1) | |
# middle blocks | |
self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1) | |
# upsample blocks | |
self.up_blocks = nn.ModuleList([]) | |
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): | |
# residual (+attention) blocks | |
if i > 0: | |
in_dim = in_dim // 2 | |
# Determine if we need upsampling | |
upsample_mode = None | |
if i != len(dim_mult) - 1: | |
upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d" | |
# Create and add the upsampling block | |
up_block = WanUpBlock( | |
in_dim=in_dim, | |
out_dim=out_dim, | |
num_res_blocks=num_res_blocks, | |
dropout=dropout, | |
upsample_mode=upsample_mode, | |
non_linearity=non_linearity, | |
) | |
self.up_blocks.append(up_block) | |
# Update scale for next iteration | |
if upsample_mode is not None: | |
scale *= 2.0 | |
# output blocks | |
self.norm_out = WanRMS_norm(out_dim, images=False) | |
self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1) | |
self.gradient_checkpointing = False | |
def forward(self, x, feat_cache=None, feat_idx=[0]): | |
## conv1 | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) | |
x = self.conv_in(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv_in(x) | |
## middle | |
x = self.mid_block(x, feat_cache, feat_idx) | |
## upsamples | |
for up_block in self.up_blocks: | |
x = up_block(x, feat_cache, feat_idx) | |
## head | |
x = self.norm_out(x) | |
x = self.nonlinearity(x) | |
if feat_cache is not None: | |
idx = feat_idx[0] | |
cache_x = x[:, :, -CACHE_T:, :, :].clone() | |
if cache_x.shape[2] < 2 and feat_cache[idx] is not None: | |
# cache last frame of last two chunk | |
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) | |
x = self.conv_out(x, feat_cache[idx]) | |
feat_cache[idx] = cache_x | |
feat_idx[0] += 1 | |
else: | |
x = self.conv_out(x) | |
return x | |
class AutoencoderKLWan(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
r""" | |
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. | |
Introduced in [Wan 2.1]. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
""" | |
_supports_gradient_checkpointing = False | |
def __init__( | |
self, | |
base_dim: int = 96, | |
z_dim: int = 16, | |
dim_mult: Tuple[int] = [1, 2, 4, 4], | |
num_res_blocks: int = 2, | |
attn_scales: List[float] = [], | |
temperal_downsample: List[bool] = [False, True, True], | |
dropout: float = 0.0, | |
latents_mean: List[float] = [ | |
-0.7571, | |
-0.7089, | |
-0.9113, | |
0.1075, | |
-0.1745, | |
0.9653, | |
-0.1517, | |
1.5508, | |
0.4134, | |
-0.0715, | |
0.5517, | |
-0.3632, | |
-0.1922, | |
-0.9497, | |
0.2503, | |
-0.2921, | |
], | |
latents_std: List[float] = [ | |
2.8184, | |
1.4541, | |
2.3275, | |
2.6558, | |
1.2196, | |
1.7708, | |
2.6052, | |
2.0743, | |
3.2687, | |
2.1526, | |
2.8652, | |
1.5579, | |
1.6382, | |
1.1253, | |
2.8251, | |
1.9160, | |
], | |
) -> None: | |
super().__init__() | |
self.z_dim = z_dim | |
self.temperal_downsample = temperal_downsample | |
self.temperal_upsample = temperal_downsample[::-1] | |
self.encoder = WanEncoder3d( | |
base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout | |
) | |
self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1) | |
self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1) | |
self.decoder = WanDecoder3d( | |
base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout | |
) | |
self.spatial_compression_ratio = 2 ** len(self.temperal_downsample) | |
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension | |
# to perform decoding of a single video latent at a time. | |
self.use_slicing = False | |
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent | |
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the | |
# intermediate tiles together, the memory requirement can be lowered. | |
self.use_tiling = False | |
# The minimal tile height and width for spatial tiling to be used | |
self.tile_sample_min_height = 256 | |
self.tile_sample_min_width = 256 | |
# The minimal distance between two spatial tiles | |
self.tile_sample_stride_height = 192 | |
self.tile_sample_stride_width = 192 | |
def enable_tiling( | |
self, | |
tile_sample_min_height: Optional[int] = None, | |
tile_sample_min_width: Optional[int] = None, | |
tile_sample_stride_height: Optional[float] = None, | |
tile_sample_stride_width: Optional[float] = None, | |
) -> None: | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
Args: | |
tile_sample_min_height (`int`, *optional*): | |
The minimum height required for a sample to be separated into tiles across the height dimension. | |
tile_sample_min_width (`int`, *optional*): | |
The minimum width required for a sample to be separated into tiles across the width dimension. | |
tile_sample_stride_height (`int`, *optional*): | |
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are | |
no tiling artifacts produced across the height dimension. | |
tile_sample_stride_width (`int`, *optional*): | |
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling | |
artifacts produced across the width dimension. | |
""" | |
self.use_tiling = True | |
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height | |
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width | |
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height | |
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width | |
def disable_tiling(self) -> None: | |
r""" | |
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_tiling = False | |
def enable_slicing(self) -> None: | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self) -> None: | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
def clear_cache(self): | |
def _count_conv3d(model): | |
count = 0 | |
for m in model.modules(): | |
if isinstance(m, WanCausalConv3d): | |
count += 1 | |
return count | |
self._conv_num = _count_conv3d(self.decoder) | |
self._conv_idx = [0] | |
self._feat_map = [None] * self._conv_num | |
# cache encode | |
self._enc_conv_num = _count_conv3d(self.encoder) | |
self._enc_conv_idx = [0] | |
self._enc_feat_map = [None] * self._enc_conv_num | |
def _encode(self, x: torch.Tensor): | |
_, _, num_frame, height, width = x.shape | |
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): | |
return self.tiled_encode(x) | |
self.clear_cache() | |
iter_ = 1 + (num_frame - 1) // 4 | |
for i in range(iter_): | |
self._enc_conv_idx = [0] | |
if i == 0: | |
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx) | |
else: | |
out_ = self.encoder( | |
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :], | |
feat_cache=self._enc_feat_map, | |
feat_idx=self._enc_conv_idx, | |
) | |
out = torch.cat([out, out_], 2) | |
enc = self.quant_conv(out) | |
self.clear_cache() | |
return enc | |
def encode( | |
self, x: torch.Tensor, return_dict: bool = True | |
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
r""" | |
Encode a batch of images into latents. | |
Args: | |
x (`torch.Tensor`): Input batch of images. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
Returns: | |
The latent representations of the encoded videos. If `return_dict` is True, a | |
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
""" | |
if self.use_slicing and x.shape[0] > 1: | |
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] | |
h = torch.cat(encoded_slices) | |
else: | |
h = self._encode(x) | |
posterior = DiagonalGaussianDistribution(h) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _decode(self, z: torch.Tensor, return_dict: bool = True): | |
_, _, num_frame, height, width = z.shape | |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height): | |
return self.tiled_decode(z, return_dict=return_dict) | |
self.clear_cache() | |
x = self.post_quant_conv(z) | |
for i in range(num_frame): | |
self._conv_idx = [0] | |
if i == 0: | |
out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) | |
else: | |
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) | |
out = torch.cat([out, out_], 2) | |
out = torch.clamp(out, min=-1.0, max=1.0) | |
self.clear_cache() | |
if not return_dict: | |
return (out,) | |
return DecoderOutput(sample=out) | |
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Decode a batch of images. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z).sample | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( | |
y / blend_extent | |
) | |
return b | |
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( | |
x / blend_extent | |
) | |
return b | |
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput: | |
r"""Encode a batch of images using a tiled encoder. | |
Args: | |
x (`torch.Tensor`): Input batch of videos. | |
Returns: | |
`torch.Tensor`: | |
The latent representation of the encoded videos. | |
""" | |
_, _, num_frames, height, width = x.shape | |
latent_height = height // self.spatial_compression_ratio | |
latent_width = width // self.spatial_compression_ratio | |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio | |
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio | |
blend_height = tile_latent_min_height - tile_latent_stride_height | |
blend_width = tile_latent_min_width - tile_latent_stride_width | |
# Split x into overlapping tiles and encode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, height, self.tile_sample_stride_height): | |
row = [] | |
for j in range(0, width, self.tile_sample_stride_width): | |
self.clear_cache() | |
time = [] | |
frame_range = 1 + (num_frames - 1) // 4 | |
for k in range(frame_range): | |
self._enc_conv_idx = [0] | |
if k == 0: | |
tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width] | |
else: | |
tile = x[ | |
:, | |
:, | |
1 + 4 * (k - 1) : 1 + 4 * k, | |
i : i + self.tile_sample_min_height, | |
j : j + self.tile_sample_min_width, | |
] | |
tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx) | |
tile = self.quant_conv(tile) | |
time.append(tile) | |
row.append(torch.cat(time, dim=2)) | |
rows.append(row) | |
self.clear_cache() | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_width) | |
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width]) | |
result_rows.append(torch.cat(result_row, dim=-1)) | |
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width] | |
return enc | |
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Decode a batch of images using a tiled decoder. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
_, _, num_frames, height, width = z.shape | |
sample_height = height * self.spatial_compression_ratio | |
sample_width = width * self.spatial_compression_ratio | |
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio | |
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio | |
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio | |
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio | |
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height | |
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width | |
# Split z into overlapping tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, height, tile_latent_stride_height): | |
row = [] | |
for j in range(0, width, tile_latent_stride_width): | |
self.clear_cache() | |
time = [] | |
for k in range(num_frames): | |
self._conv_idx = [0] | |
tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width] | |
tile = self.post_quant_conv(tile) | |
decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx) | |
time.append(decoded) | |
row.append(torch.cat(time, dim=2)) | |
rows.append(row) | |
self.clear_cache() | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_height) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_width) | |
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width]) | |
result_rows.append(torch.cat(result_row, dim=-1)) | |
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width] | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward( | |
self, | |
sample: torch.Tensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[DecoderOutput, torch.Tensor]: | |
""" | |
Args: | |
sample (`torch.Tensor`): Input sample. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z, return_dict=return_dict) | |
return dec | |