multimodalart's picture
Upload 2025 files
22a452a verified
raw
history blame
8.8 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from typing import Any, Dict, Optional, Tuple
import torch
from ..utils.logging import get_logger
logger = get_logger(__name__) # pylint: disable=invalid-name
class ModelHook:
r"""
A hook that contains callbacks to be executed just before and after the forward method of a model.
"""
_is_stateful = False
def __init__(self):
self.fn_ref: "HookFunctionReference" = None
def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
r"""
Hook that is executed when a model is initialized.
Args:
module (`torch.nn.Module`):
The module attached to this hook.
"""
return module
def deinitalize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
r"""
Hook that is executed when a model is deinitialized.
Args:
module (`torch.nn.Module`):
The module attached to this hook.
"""
return module
def pre_forward(self, module: torch.nn.Module, *args, **kwargs) -> Tuple[Tuple[Any], Dict[str, Any]]:
r"""
Hook that is executed just before the forward method of the model.
Args:
module (`torch.nn.Module`):
The module whose forward pass will be executed just after this event.
args (`Tuple[Any]`):
The positional arguments passed to the module.
kwargs (`Dict[Str, Any]`):
The keyword arguments passed to the module.
Returns:
`Tuple[Tuple[Any], Dict[Str, Any]]`:
A tuple with the treated `args` and `kwargs`.
"""
return args, kwargs
def post_forward(self, module: torch.nn.Module, output: Any) -> Any:
r"""
Hook that is executed just after the forward method of the model.
Args:
module (`torch.nn.Module`):
The module whose forward pass been executed just before this event.
output (`Any`):
The output of the module.
Returns:
`Any`: The processed `output`.
"""
return output
def detach_hook(self, module: torch.nn.Module) -> torch.nn.Module:
r"""
Hook that is executed when the hook is detached from a module.
Args:
module (`torch.nn.Module`):
The module detached from this hook.
"""
return module
def reset_state(self, module: torch.nn.Module):
if self._is_stateful:
raise NotImplementedError("This hook is stateful and needs to implement the `reset_state` method.")
return module
class HookFunctionReference:
def __init__(self) -> None:
"""A container class that maintains mutable references to forward pass functions in a hook chain.
Its mutable nature allows the hook system to modify the execution chain dynamically without rebuilding the
entire forward pass structure.
Attributes:
pre_forward: A callable that processes inputs before the main forward pass.
post_forward: A callable that processes outputs after the main forward pass.
forward: The current forward function in the hook chain.
original_forward: The original forward function, stored when a hook provides a custom new_forward.
The class enables hook removal by allowing updates to the forward chain through reference modification rather
than requiring reconstruction of the entire chain. When a hook is removed, only the relevant references need to
be updated, preserving the execution order of the remaining hooks.
"""
self.pre_forward = None
self.post_forward = None
self.forward = None
self.original_forward = None
class HookRegistry:
def __init__(self, module_ref: torch.nn.Module) -> None:
super().__init__()
self.hooks: Dict[str, ModelHook] = {}
self._module_ref = module_ref
self._hook_order = []
self._fn_refs = []
def register_hook(self, hook: ModelHook, name: str) -> None:
if name in self.hooks.keys():
raise ValueError(
f"Hook with name {name} already exists in the registry. Please use a different name or "
f"first remove the existing hook and then add a new one."
)
self._module_ref = hook.initialize_hook(self._module_ref)
def create_new_forward(function_reference: HookFunctionReference):
def new_forward(module, *args, **kwargs):
args, kwargs = function_reference.pre_forward(module, *args, **kwargs)
output = function_reference.forward(*args, **kwargs)
return function_reference.post_forward(module, output)
return new_forward
forward = self._module_ref.forward
fn_ref = HookFunctionReference()
fn_ref.pre_forward = hook.pre_forward
fn_ref.post_forward = hook.post_forward
fn_ref.forward = forward
if hasattr(hook, "new_forward"):
fn_ref.original_forward = forward
fn_ref.forward = functools.update_wrapper(
functools.partial(hook.new_forward, self._module_ref), hook.new_forward
)
rewritten_forward = create_new_forward(fn_ref)
self._module_ref.forward = functools.update_wrapper(
functools.partial(rewritten_forward, self._module_ref), rewritten_forward
)
hook.fn_ref = fn_ref
self.hooks[name] = hook
self._hook_order.append(name)
self._fn_refs.append(fn_ref)
def get_hook(self, name: str) -> Optional[ModelHook]:
return self.hooks.get(name, None)
def remove_hook(self, name: str, recurse: bool = True) -> None:
if name in self.hooks.keys():
num_hooks = len(self._hook_order)
hook = self.hooks[name]
index = self._hook_order.index(name)
fn_ref = self._fn_refs[index]
old_forward = fn_ref.forward
if fn_ref.original_forward is not None:
old_forward = fn_ref.original_forward
if index == num_hooks - 1:
self._module_ref.forward = old_forward
else:
self._fn_refs[index + 1].forward = old_forward
self._module_ref = hook.deinitalize_hook(self._module_ref)
del self.hooks[name]
self._hook_order.pop(index)
self._fn_refs.pop(index)
if recurse:
for module_name, module in self._module_ref.named_modules():
if module_name == "":
continue
if hasattr(module, "_diffusers_hook"):
module._diffusers_hook.remove_hook(name, recurse=False)
def reset_stateful_hooks(self, recurse: bool = True) -> None:
for hook_name in reversed(self._hook_order):
hook = self.hooks[hook_name]
if hook._is_stateful:
hook.reset_state(self._module_ref)
if recurse:
for module_name, module in self._module_ref.named_modules():
if module_name == "":
continue
if hasattr(module, "_diffusers_hook"):
module._diffusers_hook.reset_stateful_hooks(recurse=False)
@classmethod
def check_if_exists_or_initialize(cls, module: torch.nn.Module) -> "HookRegistry":
if not hasattr(module, "_diffusers_hook"):
module._diffusers_hook = cls(module)
return module._diffusers_hook
def __repr__(self) -> str:
registry_repr = ""
for i, hook_name in enumerate(self._hook_order):
if self.hooks[hook_name].__class__.__repr__ is not object.__repr__:
hook_repr = self.hooks[hook_name].__repr__()
else:
hook_repr = self.hooks[hook_name].__class__.__name__
registry_repr += f" ({i}) {hook_name} - {hook_repr}"
if i < len(self._hook_order) - 1:
registry_repr += "\n"
return f"HookRegistry(\n{registry_repr}\n)"