multimodalart's picture
Upload 2025 files
22a452a verified
raw
history blame
87.3 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import List
import torch
from ..utils import is_peft_version, logging, state_dict_all_zero
logger = logging.get_logger(__name__)
def swap_scale_shift(weight):
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
return new_weight
def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5):
# 1. get all state_dict_keys
all_keys = list(state_dict.keys())
sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]
not_sgm_patterns = ["down_blocks", "mid_block", "up_blocks"]
# check if state_dict contains both patterns
contains_sgm_patterns = False
contains_not_sgm_patterns = False
for key in all_keys:
if any(p in key for p in sgm_patterns):
contains_sgm_patterns = True
elif any(p in key for p in not_sgm_patterns):
contains_not_sgm_patterns = True
# if state_dict contains both patterns, remove sgm
# we can then return state_dict immediately
if contains_sgm_patterns and contains_not_sgm_patterns:
for key in all_keys:
if any(p in key for p in sgm_patterns):
state_dict.pop(key)
return state_dict
# 2. check if needs remapping, if not return original dict
is_in_sgm_format = False
for key in all_keys:
if any(p in key for p in sgm_patterns):
is_in_sgm_format = True
break
if not is_in_sgm_format:
return state_dict
# 3. Else remap from SGM patterns
new_state_dict = {}
inner_block_map = ["resnets", "attentions", "upsamplers"]
# Retrieves # of down, mid and up blocks
input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
for layer in all_keys:
if "text" in layer:
new_state_dict[layer] = state_dict.pop(layer)
else:
layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
if sgm_patterns[0] in layer:
input_block_ids.add(layer_id)
elif sgm_patterns[1] in layer:
middle_block_ids.add(layer_id)
elif sgm_patterns[2] in layer:
output_block_ids.add(layer_id)
else:
raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
input_blocks = {
layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
for layer_id in input_block_ids
}
middle_blocks = {
layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
for layer_id in middle_block_ids
}
output_blocks = {
layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
for layer_id in output_block_ids
}
# Rename keys accordingly
for i in input_block_ids:
block_id = (i - 1) // (unet_config.layers_per_block + 1)
layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)
for key in input_blocks[i]:
inner_block_id = int(key.split(delimiter)[block_slice_pos])
inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
new_key = delimiter.join(
key.split(delimiter)[: block_slice_pos - 1]
+ [str(block_id), inner_block_key, inner_layers_in_block]
+ key.split(delimiter)[block_slice_pos + 1 :]
)
new_state_dict[new_key] = state_dict.pop(key)
for i in middle_block_ids:
key_part = None
if i == 0:
key_part = [inner_block_map[0], "0"]
elif i == 1:
key_part = [inner_block_map[1], "0"]
elif i == 2:
key_part = [inner_block_map[0], "1"]
else:
raise ValueError(f"Invalid middle block id {i}.")
for key in middle_blocks[i]:
new_key = delimiter.join(
key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
)
new_state_dict[new_key] = state_dict.pop(key)
for i in output_block_ids:
block_id = i // (unet_config.layers_per_block + 1)
layer_in_block_id = i % (unet_config.layers_per_block + 1)
for key in output_blocks[i]:
inner_block_id = int(key.split(delimiter)[block_slice_pos])
inner_block_key = inner_block_map[inner_block_id]
inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
new_key = delimiter.join(
key.split(delimiter)[: block_slice_pos - 1]
+ [str(block_id), inner_block_key, inner_layers_in_block]
+ key.split(delimiter)[block_slice_pos + 1 :]
)
new_state_dict[new_key] = state_dict.pop(key)
if state_dict:
raise ValueError("At this point all state dict entries have to be converted.")
return new_state_dict
def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
"""
Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict.
Args:
state_dict (`dict`): The state dict to convert.
unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet".
text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to
"text_encoder".
Returns:
`tuple`: A tuple containing the converted state dict and a dictionary of alphas.
"""
unet_state_dict = {}
te_state_dict = {}
te2_state_dict = {}
network_alphas = {}
# Check for DoRA-enabled LoRAs.
dora_present_in_unet = any("dora_scale" in k and "lora_unet_" in k for k in state_dict)
dora_present_in_te = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict)
dora_present_in_te2 = any("dora_scale" in k and "lora_te2_" in k for k in state_dict)
if dora_present_in_unet or dora_present_in_te or dora_present_in_te2:
if is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
# Iterate over all LoRA weights.
all_lora_keys = list(state_dict.keys())
for key in all_lora_keys:
if not key.endswith("lora_down.weight"):
continue
# Extract LoRA name.
lora_name = key.split(".")[0]
# Find corresponding up weight and alpha.
lora_name_up = lora_name + ".lora_up.weight"
lora_name_alpha = lora_name + ".alpha"
# Handle U-Net LoRAs.
if lora_name.startswith("lora_unet_"):
diffusers_name = _convert_unet_lora_key(key)
# Store down and up weights.
unet_state_dict[diffusers_name] = state_dict.pop(key)
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
# Store DoRA scale if present.
if dora_present_in_unet:
dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down."
unet_state_dict[diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")] = (
state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
)
# Handle text encoder LoRAs.
elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)
# Store down and up weights for te or te2.
if lora_name.startswith(("lora_te_", "lora_te1_")):
te_state_dict[diffusers_name] = state_dict.pop(key)
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
else:
te2_state_dict[diffusers_name] = state_dict.pop(key)
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
# Store DoRA scale if present.
if dora_present_in_te or dora_present_in_te2:
dora_scale_key_to_replace_te = (
"_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer."
)
if lora_name.startswith(("lora_te_", "lora_te1_")):
te_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = (
state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
)
elif lora_name.startswith("lora_te2_"):
te2_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = (
state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
)
# Store alpha if present.
if lora_name_alpha in state_dict:
alpha = state_dict.pop(lora_name_alpha).item()
network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha))
# Check if any keys remain.
if len(state_dict) > 0:
raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}")
logger.info("Non-diffusers checkpoint detected.")
# Construct final state dict.
unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()}
te2_state_dict = (
{f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
if len(te2_state_dict) > 0
else None
)
if te2_state_dict is not None:
te_state_dict.update(te2_state_dict)
new_state_dict = {**unet_state_dict, **te_state_dict}
return new_state_dict, network_alphas
def _convert_unet_lora_key(key):
"""
Converts a U-Net LoRA key to a Diffusers compatible key.
"""
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
# Replace common U-Net naming patterns.
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
diffusers_name = diffusers_name.replace("middle.block", "mid_block")
diffusers_name = diffusers_name.replace("mid.block", "mid_block")
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
# SDXL specific conversions.
if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
pattern = r"\.\d+(?=\D*$)"
diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
if ".in." in diffusers_name:
diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
if ".out." in diffusers_name:
diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
diffusers_name = diffusers_name.replace("op", "conv")
if "skip" in diffusers_name:
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
# LyCORIS specific conversions.
if "time.emb.proj" in diffusers_name:
diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
if "conv.shortcut" in diffusers_name:
diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
# General conversions.
if "transformer_blocks" in diffusers_name:
if "attn1" in diffusers_name or "attn2" in diffusers_name:
diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
elif "ff" in diffusers_name:
pass
elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
pass
else:
pass
return diffusers_name
def _convert_text_encoder_lora_key(key, lora_name):
"""
Converts a text encoder LoRA key to a Diffusers compatible key.
"""
if lora_name.startswith(("lora_te_", "lora_te1_")):
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
else:
key_to_replace = "lora_te2_"
diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
diffusers_name = diffusers_name.replace("text.model", "text_model")
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
diffusers_name = diffusers_name.replace("text.projection", "text_projection")
if "self_attn" in diffusers_name or "text_projection" in diffusers_name:
pass
elif "mlp" in diffusers_name:
# Be aware that this is the new diffusers convention and the rest of the code might
# not utilize it yet.
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
return diffusers_name
def _get_alpha_name(lora_name_alpha, diffusers_name, alpha):
"""
Gets the correct alpha name for the Diffusers model.
"""
if lora_name_alpha.startswith("lora_unet_"):
prefix = "unet."
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
prefix = "text_encoder."
else:
prefix = "text_encoder_2."
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
return {new_name: alpha}
# The utilities under `_convert_kohya_flux_lora_to_diffusers()`
# are adapted from https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
def _convert_kohya_flux_lora_to_diffusers(state_dict):
def _convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key):
if sds_key + ".lora_down.weight" not in sds_sd:
return
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
# scale weight by alpha and dim
rank = down_weight.shape[0]
default_alpha = torch.tensor(rank, dtype=down_weight.dtype, device=down_weight.device, requires_grad=False)
alpha = sds_sd.pop(sds_key + ".alpha", default_alpha).item() # alpha is scalar
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
# calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down
ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up
def _convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
if sds_key + ".lora_down.weight" not in sds_sd:
return
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
up_weight = sds_sd.pop(sds_key + ".lora_up.weight")
sd_lora_rank = down_weight.shape[0]
# scale weight by alpha and dim
default_alpha = torch.tensor(
sd_lora_rank, dtype=down_weight.dtype, device=down_weight.device, requires_grad=False
)
alpha = sds_sd.pop(sds_key + ".alpha", default_alpha)
scale = alpha / sd_lora_rank
# calculate scale_down and scale_up
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
down_weight = down_weight * scale_down
up_weight = up_weight * scale_up
# calculate dims if not provided
num_splits = len(ait_keys)
if dims is None:
dims = [up_weight.shape[0] // num_splits] * num_splits
else:
assert sum(dims) == up_weight.shape[0]
# check upweight is sparse or not
is_sparse = False
if sd_lora_rank % num_splits == 0:
ait_rank = sd_lora_rank // num_splits
is_sparse = True
i = 0
for j in range(len(dims)):
for k in range(len(dims)):
if j == k:
continue
is_sparse = is_sparse and torch.all(
up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0
)
i += dims[j]
if is_sparse:
logger.info(f"weight is sparse: {sds_key}")
# make ai-toolkit weight
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
if not is_sparse:
# down_weight is copied to each split
ait_sd.update(dict.fromkeys(ait_down_keys, down_weight))
# up_weight is split to each split
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
else:
# down_weight is chunked to each split
ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) # noqa: C416
# up_weight is sparse: only non-zero values are copied to each split
i = 0
for j in range(len(dims)):
ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous()
i += dims[j]
def _convert_sd_scripts_to_ai_toolkit(sds_sd):
ait_sd = {}
for i in range(19):
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_attn_proj",
f"transformer.transformer_blocks.{i}.attn.to_out.0",
)
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.to_q",
f"transformer.transformer_blocks.{i}.attn.to_k",
f"transformer.transformer_blocks.{i}.attn.to_v",
],
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_mlp_0",
f"transformer.transformer_blocks.{i}.ff.net.0.proj",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_mlp_2",
f"transformer.transformer_blocks.{i}.ff.net.2",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_img_mod_lin",
f"transformer.transformer_blocks.{i}.norm1.linear",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_attn_proj",
f"transformer.transformer_blocks.{i}.attn.to_add_out",
)
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_attn_qkv",
[
f"transformer.transformer_blocks.{i}.attn.add_q_proj",
f"transformer.transformer_blocks.{i}.attn.add_k_proj",
f"transformer.transformer_blocks.{i}.attn.add_v_proj",
],
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_mlp_0",
f"transformer.transformer_blocks.{i}.ff_context.net.0.proj",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_mlp_2",
f"transformer.transformer_blocks.{i}.ff_context.net.2",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_double_blocks_{i}_txt_mod_lin",
f"transformer.transformer_blocks.{i}.norm1_context.linear",
)
for i in range(38):
_convert_to_ai_toolkit_cat(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_linear1",
[
f"transformer.single_transformer_blocks.{i}.attn.to_q",
f"transformer.single_transformer_blocks.{i}.attn.to_k",
f"transformer.single_transformer_blocks.{i}.attn.to_v",
f"transformer.single_transformer_blocks.{i}.proj_mlp",
],
dims=[3072, 3072, 3072, 12288],
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_linear2",
f"transformer.single_transformer_blocks.{i}.proj_out",
)
_convert_to_ai_toolkit(
sds_sd,
ait_sd,
f"lora_unet_single_blocks_{i}_modulation_lin",
f"transformer.single_transformer_blocks.{i}.norm.linear",
)
# TODO: alphas.
def assign_remaining_weights(assignments, source):
for lora_key in ["lora_A", "lora_B"]:
orig_lora_key = "lora_down" if lora_key == "lora_A" else "lora_up"
for target_fmt, source_fmt, transform in assignments:
target_key = target_fmt.format(lora_key=lora_key)
source_key = source_fmt.format(orig_lora_key=orig_lora_key)
value = source.pop(source_key)
if transform:
value = transform(value)
ait_sd[target_key] = value
if any("guidance_in" in k for k in sds_sd):
assign_remaining_weights(
[
(
"time_text_embed.guidance_embedder.linear_1.{lora_key}.weight",
"lora_unet_guidance_in_in_layer.{orig_lora_key}.weight",
None,
),
(
"time_text_embed.guidance_embedder.linear_2.{lora_key}.weight",
"lora_unet_guidance_in_out_layer.{orig_lora_key}.weight",
None,
),
],
sds_sd,
)
if any("img_in" in k for k in sds_sd):
assign_remaining_weights(
[
("x_embedder.{lora_key}.weight", "lora_unet_img_in.{orig_lora_key}.weight", None),
],
sds_sd,
)
if any("txt_in" in k for k in sds_sd):
assign_remaining_weights(
[
("context_embedder.{lora_key}.weight", "lora_unet_txt_in.{orig_lora_key}.weight", None),
],
sds_sd,
)
if any("time_in" in k for k in sds_sd):
assign_remaining_weights(
[
(
"time_text_embed.timestep_embedder.linear_1.{lora_key}.weight",
"lora_unet_time_in_in_layer.{orig_lora_key}.weight",
None,
),
(
"time_text_embed.timestep_embedder.linear_2.{lora_key}.weight",
"lora_unet_time_in_out_layer.{orig_lora_key}.weight",
None,
),
],
sds_sd,
)
if any("vector_in" in k for k in sds_sd):
assign_remaining_weights(
[
(
"time_text_embed.text_embedder.linear_1.{lora_key}.weight",
"lora_unet_vector_in_in_layer.{orig_lora_key}.weight",
None,
),
(
"time_text_embed.text_embedder.linear_2.{lora_key}.weight",
"lora_unet_vector_in_out_layer.{orig_lora_key}.weight",
None,
),
],
sds_sd,
)
if any("final_layer" in k for k in sds_sd):
# Notice the swap in processing for "final_layer".
assign_remaining_weights(
[
(
"norm_out.linear.{lora_key}.weight",
"lora_unet_final_layer_adaLN_modulation_1.{orig_lora_key}.weight",
swap_scale_shift,
),
("proj_out.{lora_key}.weight", "lora_unet_final_layer_linear.{orig_lora_key}.weight", None),
],
sds_sd,
)
remaining_keys = list(sds_sd.keys())
te_state_dict = {}
if remaining_keys:
if not all(k.startswith(("lora_te", "lora_te1")) for k in remaining_keys):
raise ValueError(f"Incompatible keys detected: \n\n {', '.join(remaining_keys)}")
for key in remaining_keys:
if not key.endswith("lora_down.weight"):
continue
lora_name = key.split(".")[0]
lora_name_up = f"{lora_name}.lora_up.weight"
lora_name_alpha = f"{lora_name}.alpha"
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)
if lora_name.startswith(("lora_te_", "lora_te1_")):
down_weight = sds_sd.pop(key)
sd_lora_rank = down_weight.shape[0]
te_state_dict[diffusers_name] = down_weight
te_state_dict[diffusers_name.replace(".down.", ".up.")] = sds_sd.pop(lora_name_up)
if lora_name_alpha in sds_sd:
alpha = sds_sd.pop(lora_name_alpha).item()
scale = alpha / sd_lora_rank
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
te_state_dict[diffusers_name] *= scale_down
te_state_dict[diffusers_name.replace(".down.", ".up.")] *= scale_up
if len(sds_sd) > 0:
logger.warning(f"Unsupported keys for ai-toolkit: {sds_sd.keys()}")
if te_state_dict:
te_state_dict = {f"text_encoder.{module_name}": params for module_name, params in te_state_dict.items()}
new_state_dict = {**ait_sd, **te_state_dict}
return new_state_dict
def _convert_mixture_state_dict_to_diffusers(state_dict):
new_state_dict = {}
def _convert(original_key, diffusers_key, state_dict, new_state_dict):
down_key = f"{original_key}.lora_down.weight"
down_weight = state_dict.pop(down_key)
lora_rank = down_weight.shape[0]
up_weight_key = f"{original_key}.lora_up.weight"
up_weight = state_dict.pop(up_weight_key)
alpha_key = f"{original_key}.alpha"
alpha = state_dict.pop(alpha_key)
# scale weight by alpha and dim
scale = alpha / lora_rank
# calculate scale_down and scale_up
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
down_weight = down_weight * scale_down
up_weight = up_weight * scale_up
diffusers_down_key = f"{diffusers_key}.lora_A.weight"
new_state_dict[diffusers_down_key] = down_weight
new_state_dict[diffusers_down_key.replace(".lora_A.", ".lora_B.")] = up_weight
all_unique_keys = {
k.replace(".lora_down.weight", "").replace(".lora_up.weight", "").replace(".alpha", "")
for k in state_dict
if not k.startswith(("lora_unet_"))
}
assert all(k.startswith(("lora_transformer_", "lora_te1_")) for k in all_unique_keys), f"{all_unique_keys=}"
has_te_keys = False
for k in all_unique_keys:
if k.startswith("lora_transformer_single_transformer_blocks_"):
i = int(k.split("lora_transformer_single_transformer_blocks_")[-1].split("_")[0])
diffusers_key = f"single_transformer_blocks.{i}"
elif k.startswith("lora_transformer_transformer_blocks_"):
i = int(k.split("lora_transformer_transformer_blocks_")[-1].split("_")[0])
diffusers_key = f"transformer_blocks.{i}"
elif k.startswith("lora_te1_"):
has_te_keys = True
continue
elif k.startswith("lora_transformer_context_embedder"):
diffusers_key = "context_embedder"
elif k.startswith("lora_transformer_norm_out_linear"):
diffusers_key = "norm_out.linear"
elif k.startswith("lora_transformer_proj_out"):
diffusers_key = "proj_out"
elif k.startswith("lora_transformer_x_embedder"):
diffusers_key = "x_embedder"
elif k.startswith("lora_transformer_time_text_embed_guidance_embedder_linear_"):
i = int(k.split("lora_transformer_time_text_embed_guidance_embedder_linear_")[-1])
diffusers_key = f"time_text_embed.guidance_embedder.linear_{i}"
elif k.startswith("lora_transformer_time_text_embed_text_embedder_linear_"):
i = int(k.split("lora_transformer_time_text_embed_text_embedder_linear_")[-1])
diffusers_key = f"time_text_embed.text_embedder.linear_{i}"
elif k.startswith("lora_transformer_time_text_embed_timestep_embedder_linear_"):
i = int(k.split("lora_transformer_time_text_embed_timestep_embedder_linear_")[-1])
diffusers_key = f"time_text_embed.timestep_embedder.linear_{i}"
else:
raise NotImplementedError(f"Handling for key ({k}) is not implemented.")
if "attn_" in k:
if "_to_out_0" in k:
diffusers_key += ".attn.to_out.0"
elif "_to_add_out" in k:
diffusers_key += ".attn.to_add_out"
elif any(qkv in k for qkv in ["to_q", "to_k", "to_v"]):
remaining = k.split("attn_")[-1]
diffusers_key += f".attn.{remaining}"
elif any(add_qkv in k for add_qkv in ["add_q_proj", "add_k_proj", "add_v_proj"]):
remaining = k.split("attn_")[-1]
diffusers_key += f".attn.{remaining}"
_convert(k, diffusers_key, state_dict, new_state_dict)
if has_te_keys:
layer_pattern = re.compile(r"lora_te1_text_model_encoder_layers_(\d+)")
attn_mapping = {
"q_proj": ".self_attn.q_proj",
"k_proj": ".self_attn.k_proj",
"v_proj": ".self_attn.v_proj",
"out_proj": ".self_attn.out_proj",
}
mlp_mapping = {"fc1": ".mlp.fc1", "fc2": ".mlp.fc2"}
for k in all_unique_keys:
if not k.startswith("lora_te1_"):
continue
match = layer_pattern.search(k)
if not match:
continue
i = int(match.group(1))
diffusers_key = f"text_model.encoder.layers.{i}"
if "attn" in k:
for key_fragment, suffix in attn_mapping.items():
if key_fragment in k:
diffusers_key += suffix
break
elif "mlp" in k:
for key_fragment, suffix in mlp_mapping.items():
if key_fragment in k:
diffusers_key += suffix
break
_convert(k, diffusers_key, state_dict, new_state_dict)
remaining_all_unet = False
if state_dict:
remaining_all_unet = all(k.startswith("lora_unet_") for k in state_dict)
if remaining_all_unet:
keys = list(state_dict.keys())
for k in keys:
state_dict.pop(k)
if len(state_dict) > 0:
raise ValueError(
f"Expected an empty state dict at this point but its has these keys which couldn't be parsed: {list(state_dict.keys())}."
)
transformer_state_dict = {
f"transformer.{k}": v for k, v in new_state_dict.items() if not k.startswith("text_model.")
}
te_state_dict = {f"text_encoder.{k}": v for k, v in new_state_dict.items() if k.startswith("text_model.")}
return {**transformer_state_dict, **te_state_dict}
# This is weird.
# https://huggingface.co/sayakpaul/different-lora-from-civitai/tree/main?show_file_info=sharp_detailed_foot.safetensors
# has both `peft` and non-peft state dict.
has_peft_state_dict = any(k.startswith("transformer.") for k in state_dict)
if has_peft_state_dict:
state_dict = {k: v for k, v in state_dict.items() if k.startswith("transformer.")}
return state_dict
# Another weird one.
has_mixture = any(
k.startswith("lora_transformer_") and ("lora_down" in k or "lora_up" in k or "alpha" in k) for k in state_dict
)
# ComfyUI.
if not has_mixture:
state_dict = {k.replace("diffusion_model.", "lora_unet_"): v for k, v in state_dict.items()}
state_dict = {k.replace("text_encoders.clip_l.transformer.", "lora_te_"): v for k, v in state_dict.items()}
has_position_embedding = any("position_embedding" in k for k in state_dict)
if has_position_embedding:
zero_status_pe = state_dict_all_zero(state_dict, "position_embedding")
if zero_status_pe:
logger.info(
"The `position_embedding` LoRA params are all zeros which make them ineffective. "
"So, we will purge them out of the current state dict to make loading possible."
)
else:
logger.info(
"The state_dict has position_embedding LoRA params and we currently do not support them. "
"Open an issue if you need this supported - https://github.com/huggingface/diffusers/issues/new."
)
state_dict = {k: v for k, v in state_dict.items() if "position_embedding" not in k}
has_t5xxl = any(k.startswith("text_encoders.t5xxl.transformer.") for k in state_dict)
if has_t5xxl:
zero_status_t5 = state_dict_all_zero(state_dict, "text_encoders.t5xxl")
if zero_status_t5:
logger.info(
"The `t5xxl` LoRA params are all zeros which make them ineffective. "
"So, we will purge them out of the current state dict to make loading possible."
)
else:
logger.info(
"T5-xxl keys found in the state dict, which are currently unsupported. We will filter them out."
"Open an issue if this is a problem - https://github.com/huggingface/diffusers/issues/new."
)
state_dict = {k: v for k, v in state_dict.items() if not k.startswith("text_encoders.t5xxl.transformer.")}
has_diffb = any("diff_b" in k and k.startswith(("lora_unet_", "lora_te_")) for k in state_dict)
if has_diffb:
zero_status_diff_b = state_dict_all_zero(state_dict, ".diff_b")
if zero_status_diff_b:
logger.info(
"The `diff_b` LoRA params are all zeros which make them ineffective. "
"So, we will purge them out of the current state dict to make loading possible."
)
else:
logger.info(
"`diff_b` keys found in the state dict which are currently unsupported. "
"So, we will filter out those keys. Open an issue if this is a problem - "
"https://github.com/huggingface/diffusers/issues/new."
)
state_dict = {k: v for k, v in state_dict.items() if ".diff_b" not in k}
has_norm_diff = any(".norm" in k and ".diff" in k for k in state_dict)
if has_norm_diff:
zero_status_diff = state_dict_all_zero(state_dict, ".diff")
if zero_status_diff:
logger.info(
"The `diff` LoRA params are all zeros which make them ineffective. "
"So, we will purge them out of the current state dict to make loading possible."
)
else:
logger.info(
"Normalization diff keys found in the state dict which are currently unsupported. "
"So, we will filter out those keys. Open an issue if this is a problem - "
"https://github.com/huggingface/diffusers/issues/new."
)
state_dict = {k: v for k, v in state_dict.items() if ".norm" not in k and ".diff" not in k}
limit_substrings = ["lora_down", "lora_up"]
if any("alpha" in k for k in state_dict):
limit_substrings.append("alpha")
state_dict = {
_custom_replace(k, limit_substrings): v
for k, v in state_dict.items()
if k.startswith(("lora_unet_", "lora_te_"))
}
if any("text_projection" in k for k in state_dict):
logger.info(
"`text_projection` keys found in the `state_dict` which are unexpected. "
"So, we will filter out those keys. Open an issue if this is a problem - "
"https://github.com/huggingface/diffusers/issues/new."
)
state_dict = {k: v for k, v in state_dict.items() if "text_projection" not in k}
if has_mixture:
return _convert_mixture_state_dict_to_diffusers(state_dict)
return _convert_sd_scripts_to_ai_toolkit(state_dict)
# Adapted from https://gist.github.com/Leommm-byte/6b331a1e9bd53271210b26543a7065d6
# Some utilities were reused from
# https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
def _convert_xlabs_flux_lora_to_diffusers(old_state_dict):
new_state_dict = {}
orig_keys = list(old_state_dict.keys())
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
down_weight = sds_sd.pop(sds_key)
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))
# calculate dims if not provided
num_splits = len(ait_keys)
if dims is None:
dims = [up_weight.shape[0] // num_splits] * num_splits
else:
assert sum(dims) == up_weight.shape[0]
# make ai-toolkit weight
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
# down_weight is copied to each split
ait_sd.update(dict.fromkeys(ait_down_keys, down_weight))
# up_weight is split to each split
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
for old_key in orig_keys:
# Handle double_blocks
if old_key.startswith(("diffusion_model.double_blocks", "double_blocks")):
block_num = re.search(r"double_blocks\.(\d+)", old_key).group(1)
new_key = f"transformer.transformer_blocks.{block_num}"
if "processor.proj_lora1" in old_key:
new_key += ".attn.to_out.0"
elif "processor.proj_lora2" in old_key:
new_key += ".attn.to_add_out"
# Handle text latents.
elif "processor.qkv_lora2" in old_key and "up" not in old_key:
handle_qkv(
old_state_dict,
new_state_dict,
old_key,
[
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
],
)
# continue
# Handle image latents.
elif "processor.qkv_lora1" in old_key and "up" not in old_key:
handle_qkv(
old_state_dict,
new_state_dict,
old_key,
[
f"transformer.transformer_blocks.{block_num}.attn.to_q",
f"transformer.transformer_blocks.{block_num}.attn.to_k",
f"transformer.transformer_blocks.{block_num}.attn.to_v",
],
)
# continue
if "down" in old_key:
new_key += ".lora_A.weight"
elif "up" in old_key:
new_key += ".lora_B.weight"
# Handle single_blocks
elif old_key.startswith(("diffusion_model.single_blocks", "single_blocks")):
block_num = re.search(r"single_blocks\.(\d+)", old_key).group(1)
new_key = f"transformer.single_transformer_blocks.{block_num}"
if "proj_lora" in old_key:
new_key += ".proj_out"
elif "qkv_lora" in old_key and "up" not in old_key:
handle_qkv(
old_state_dict,
new_state_dict,
old_key,
[
f"transformer.single_transformer_blocks.{block_num}.attn.to_q",
f"transformer.single_transformer_blocks.{block_num}.attn.to_k",
f"transformer.single_transformer_blocks.{block_num}.attn.to_v",
],
)
if "down" in old_key:
new_key += ".lora_A.weight"
elif "up" in old_key:
new_key += ".lora_B.weight"
else:
# Handle other potential key patterns here
new_key = old_key
# Since we already handle qkv above.
if "qkv" not in old_key:
new_state_dict[new_key] = old_state_dict.pop(old_key)
if len(old_state_dict) > 0:
raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")
return new_state_dict
def _custom_replace(key: str, substrings: List[str]) -> str:
# Replaces the "."s with "_"s upto the `substrings`.
# Example:
# lora_unet.foo.bar.lora_A.weight -> lora_unet_foo_bar.lora_A.weight
pattern = "(" + "|".join(re.escape(sub) for sub in substrings) + ")"
match = re.search(pattern, key)
if match:
start_sub = match.start()
if start_sub > 0 and key[start_sub - 1] == ".":
boundary = start_sub - 1
else:
boundary = start_sub
left = key[:boundary].replace(".", "_")
right = key[boundary:]
return left + right
else:
return key.replace(".", "_")
def _convert_bfl_flux_control_lora_to_diffusers(original_state_dict):
converted_state_dict = {}
original_state_dict_keys = list(original_state_dict.keys())
num_layers = 19
num_single_layers = 38
inner_dim = 3072
mlp_ratio = 4.0
for lora_key in ["lora_A", "lora_B"]:
## time_text_embed.timestep_embedder <- time_in
converted_state_dict[f"time_text_embed.timestep_embedder.linear_1.{lora_key}.weight"] = (
original_state_dict.pop(f"time_in.in_layer.{lora_key}.weight")
)
if f"time_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"time_text_embed.timestep_embedder.linear_1.{lora_key}.bias"] = (
original_state_dict.pop(f"time_in.in_layer.{lora_key}.bias")
)
converted_state_dict[f"time_text_embed.timestep_embedder.linear_2.{lora_key}.weight"] = (
original_state_dict.pop(f"time_in.out_layer.{lora_key}.weight")
)
if f"time_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"time_text_embed.timestep_embedder.linear_2.{lora_key}.bias"] = (
original_state_dict.pop(f"time_in.out_layer.{lora_key}.bias")
)
## time_text_embed.text_embedder <- vector_in
converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.weight"] = original_state_dict.pop(
f"vector_in.in_layer.{lora_key}.weight"
)
if f"vector_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.bias"] = original_state_dict.pop(
f"vector_in.in_layer.{lora_key}.bias"
)
converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.weight"] = original_state_dict.pop(
f"vector_in.out_layer.{lora_key}.weight"
)
if f"vector_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.bias"] = original_state_dict.pop(
f"vector_in.out_layer.{lora_key}.bias"
)
# guidance
has_guidance = any("guidance" in k for k in original_state_dict)
if has_guidance:
converted_state_dict[f"time_text_embed.guidance_embedder.linear_1.{lora_key}.weight"] = (
original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.weight")
)
if f"guidance_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"time_text_embed.guidance_embedder.linear_1.{lora_key}.bias"] = (
original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.bias")
)
converted_state_dict[f"time_text_embed.guidance_embedder.linear_2.{lora_key}.weight"] = (
original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.weight")
)
if f"guidance_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"time_text_embed.guidance_embedder.linear_2.{lora_key}.bias"] = (
original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.bias")
)
# context_embedder
converted_state_dict[f"context_embedder.{lora_key}.weight"] = original_state_dict.pop(
f"txt_in.{lora_key}.weight"
)
if f"txt_in.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"context_embedder.{lora_key}.bias"] = original_state_dict.pop(
f"txt_in.{lora_key}.bias"
)
# x_embedder
converted_state_dict[f"x_embedder.{lora_key}.weight"] = original_state_dict.pop(f"img_in.{lora_key}.weight")
if f"img_in.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"x_embedder.{lora_key}.bias"] = original_state_dict.pop(f"img_in.{lora_key}.bias")
# double transformer blocks
for i in range(num_layers):
block_prefix = f"transformer_blocks.{i}."
for lora_key in ["lora_A", "lora_B"]:
# norms
converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_mod.lin.{lora_key}.weight"
)
if f"double_blocks.{i}.img_mod.lin.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_mod.lin.{lora_key}.bias"
)
converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mod.lin.{lora_key}.weight"
)
if f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias"
)
# Q, K, V
if lora_key == "lora_A":
sample_lora_weight = original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight")
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_lora_weight])
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_lora_weight])
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_lora_weight])
context_lora_weight = original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight")
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat(
[context_lora_weight]
)
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat(
[context_lora_weight]
)
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat(
[context_lora_weight]
)
else:
sample_q, sample_k, sample_v = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight"), 3, dim=0
)
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_q])
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_k])
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_v])
context_q, context_k, context_v = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight"), 3, dim=0
)
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat([context_q])
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat([context_k])
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat([context_v])
if f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias" in original_state_dict_keys:
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias"), 3, dim=0
)
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([sample_q_bias])
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([sample_k_bias])
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([sample_v_bias])
if f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias" in original_state_dict_keys:
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias"), 3, dim=0
)
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.bias"] = torch.cat([context_q_bias])
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.bias"] = torch.cat([context_k_bias])
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.bias"] = torch.cat([context_v_bias])
# ff img_mlp
converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.0.{lora_key}.weight"
)
if f"double_blocks.{i}.img_mlp.0.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.0.{lora_key}.bias"
)
converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.2.{lora_key}.weight"
)
if f"double_blocks.{i}.img_mlp.2.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_mlp.2.{lora_key}.bias"
)
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.0.{lora_key}.weight"
)
if f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias"
)
converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.2.{lora_key}.weight"
)
if f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias"
)
# output projections.
converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.proj.{lora_key}.weight"
)
if f"double_blocks.{i}.img_attn.proj.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.proj.{lora_key}.bias"
)
converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.proj.{lora_key}.weight"
)
if f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.bias"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias"
)
# qk_norm
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.norm.query_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
f"double_blocks.{i}.img_attn.norm.key_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
)
# single transformer blocks
for i in range(num_single_layers):
block_prefix = f"single_transformer_blocks.{i}."
for lora_key in ["lora_A", "lora_B"]:
# norm.linear <- single_blocks.0.modulation.lin
converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.weight"] = original_state_dict.pop(
f"single_blocks.{i}.modulation.lin.{lora_key}.weight"
)
if f"single_blocks.{i}.modulation.lin.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.bias"] = original_state_dict.pop(
f"single_blocks.{i}.modulation.lin.{lora_key}.bias"
)
# Q, K, V, mlp
mlp_hidden_dim = int(inner_dim * mlp_ratio)
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
if lora_key == "lora_A":
lora_weight = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight")
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([lora_weight])
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([lora_weight])
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([lora_weight])
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([lora_weight])
if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys:
lora_bias = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias")
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([lora_bias])
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([lora_bias])
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([lora_bias])
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([lora_bias])
else:
q, k, v, mlp = torch.split(
original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight"), split_size, dim=0
)
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([q])
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([k])
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([v])
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([mlp])
if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys:
q_bias, k_bias, v_bias, mlp_bias = torch.split(
original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias"), split_size, dim=0
)
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([q_bias])
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([k_bias])
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([v_bias])
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([mlp_bias])
# output projections.
converted_state_dict[f"{block_prefix}proj_out.{lora_key}.weight"] = original_state_dict.pop(
f"single_blocks.{i}.linear2.{lora_key}.weight"
)
if f"single_blocks.{i}.linear2.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"{block_prefix}proj_out.{lora_key}.bias"] = original_state_dict.pop(
f"single_blocks.{i}.linear2.{lora_key}.bias"
)
# qk norm
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
f"single_blocks.{i}.norm.query_norm.scale"
)
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
f"single_blocks.{i}.norm.key_norm.scale"
)
for lora_key in ["lora_A", "lora_B"]:
converted_state_dict[f"proj_out.{lora_key}.weight"] = original_state_dict.pop(
f"final_layer.linear.{lora_key}.weight"
)
if f"final_layer.linear.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"proj_out.{lora_key}.bias"] = original_state_dict.pop(
f"final_layer.linear.{lora_key}.bias"
)
converted_state_dict[f"norm_out.linear.{lora_key}.weight"] = swap_scale_shift(
original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.weight")
)
if f"final_layer.adaLN_modulation.1.{lora_key}.bias" in original_state_dict_keys:
converted_state_dict[f"norm_out.linear.{lora_key}.bias"] = swap_scale_shift(
original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.bias")
)
if len(original_state_dict) > 0:
raise ValueError(f"`original_state_dict` should be empty at this point but has {original_state_dict.keys()=}.")
for key in list(converted_state_dict.keys()):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)
return converted_state_dict
def _convert_hunyuan_video_lora_to_diffusers(original_state_dict):
converted_state_dict = {k: original_state_dict.pop(k) for k in list(original_state_dict.keys())}
def remap_norm_scale_shift_(key, state_dict):
weight = state_dict.pop(key)
shift, scale = weight.chunk(2, dim=0)
new_weight = torch.cat([scale, shift], dim=0)
state_dict[key.replace("final_layer.adaLN_modulation.1", "norm_out.linear")] = new_weight
def remap_txt_in_(key, state_dict):
def rename_key(key):
new_key = key.replace("individual_token_refiner.blocks", "token_refiner.refiner_blocks")
new_key = new_key.replace("adaLN_modulation.1", "norm_out.linear")
new_key = new_key.replace("txt_in", "context_embedder")
new_key = new_key.replace("t_embedder.mlp.0", "time_text_embed.timestep_embedder.linear_1")
new_key = new_key.replace("t_embedder.mlp.2", "time_text_embed.timestep_embedder.linear_2")
new_key = new_key.replace("c_embedder", "time_text_embed.text_embedder")
new_key = new_key.replace("mlp", "ff")
return new_key
if "self_attn_qkv" in key:
weight = state_dict.pop(key)
to_q, to_k, to_v = weight.chunk(3, dim=0)
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_q"))] = to_q
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_k"))] = to_k
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_v"))] = to_v
else:
state_dict[rename_key(key)] = state_dict.pop(key)
def remap_img_attn_qkv_(key, state_dict):
weight = state_dict.pop(key)
if "lora_A" in key:
state_dict[key.replace("img_attn_qkv", "attn.to_q")] = weight
state_dict[key.replace("img_attn_qkv", "attn.to_k")] = weight
state_dict[key.replace("img_attn_qkv", "attn.to_v")] = weight
else:
to_q, to_k, to_v = weight.chunk(3, dim=0)
state_dict[key.replace("img_attn_qkv", "attn.to_q")] = to_q
state_dict[key.replace("img_attn_qkv", "attn.to_k")] = to_k
state_dict[key.replace("img_attn_qkv", "attn.to_v")] = to_v
def remap_txt_attn_qkv_(key, state_dict):
weight = state_dict.pop(key)
if "lora_A" in key:
state_dict[key.replace("txt_attn_qkv", "attn.add_q_proj")] = weight
state_dict[key.replace("txt_attn_qkv", "attn.add_k_proj")] = weight
state_dict[key.replace("txt_attn_qkv", "attn.add_v_proj")] = weight
else:
to_q, to_k, to_v = weight.chunk(3, dim=0)
state_dict[key.replace("txt_attn_qkv", "attn.add_q_proj")] = to_q
state_dict[key.replace("txt_attn_qkv", "attn.add_k_proj")] = to_k
state_dict[key.replace("txt_attn_qkv", "attn.add_v_proj")] = to_v
def remap_single_transformer_blocks_(key, state_dict):
hidden_size = 3072
if "linear1.lora_A.weight" in key or "linear1.lora_B.weight" in key:
linear1_weight = state_dict.pop(key)
if "lora_A" in key:
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
".linear1.lora_A.weight"
)
state_dict[f"{new_key}.attn.to_q.lora_A.weight"] = linear1_weight
state_dict[f"{new_key}.attn.to_k.lora_A.weight"] = linear1_weight
state_dict[f"{new_key}.attn.to_v.lora_A.weight"] = linear1_weight
state_dict[f"{new_key}.proj_mlp.lora_A.weight"] = linear1_weight
else:
split_size = (hidden_size, hidden_size, hidden_size, linear1_weight.size(0) - 3 * hidden_size)
q, k, v, mlp = torch.split(linear1_weight, split_size, dim=0)
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
".linear1.lora_B.weight"
)
state_dict[f"{new_key}.attn.to_q.lora_B.weight"] = q
state_dict[f"{new_key}.attn.to_k.lora_B.weight"] = k
state_dict[f"{new_key}.attn.to_v.lora_B.weight"] = v
state_dict[f"{new_key}.proj_mlp.lora_B.weight"] = mlp
elif "linear1.lora_A.bias" in key or "linear1.lora_B.bias" in key:
linear1_bias = state_dict.pop(key)
if "lora_A" in key:
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
".linear1.lora_A.bias"
)
state_dict[f"{new_key}.attn.to_q.lora_A.bias"] = linear1_bias
state_dict[f"{new_key}.attn.to_k.lora_A.bias"] = linear1_bias
state_dict[f"{new_key}.attn.to_v.lora_A.bias"] = linear1_bias
state_dict[f"{new_key}.proj_mlp.lora_A.bias"] = linear1_bias
else:
split_size = (hidden_size, hidden_size, hidden_size, linear1_bias.size(0) - 3 * hidden_size)
q_bias, k_bias, v_bias, mlp_bias = torch.split(linear1_bias, split_size, dim=0)
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
".linear1.lora_B.bias"
)
state_dict[f"{new_key}.attn.to_q.lora_B.bias"] = q_bias
state_dict[f"{new_key}.attn.to_k.lora_B.bias"] = k_bias
state_dict[f"{new_key}.attn.to_v.lora_B.bias"] = v_bias
state_dict[f"{new_key}.proj_mlp.lora_B.bias"] = mlp_bias
else:
new_key = key.replace("single_blocks", "single_transformer_blocks")
new_key = new_key.replace("linear2", "proj_out")
new_key = new_key.replace("q_norm", "attn.norm_q")
new_key = new_key.replace("k_norm", "attn.norm_k")
state_dict[new_key] = state_dict.pop(key)
TRANSFORMER_KEYS_RENAME_DICT = {
"img_in": "x_embedder",
"time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1",
"time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2",
"guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1",
"guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2",
"vector_in.in_layer": "time_text_embed.text_embedder.linear_1",
"vector_in.out_layer": "time_text_embed.text_embedder.linear_2",
"double_blocks": "transformer_blocks",
"img_attn_q_norm": "attn.norm_q",
"img_attn_k_norm": "attn.norm_k",
"img_attn_proj": "attn.to_out.0",
"txt_attn_q_norm": "attn.norm_added_q",
"txt_attn_k_norm": "attn.norm_added_k",
"txt_attn_proj": "attn.to_add_out",
"img_mod.linear": "norm1.linear",
"img_norm1": "norm1.norm",
"img_norm2": "norm2",
"img_mlp": "ff",
"txt_mod.linear": "norm1_context.linear",
"txt_norm1": "norm1.norm",
"txt_norm2": "norm2_context",
"txt_mlp": "ff_context",
"self_attn_proj": "attn.to_out.0",
"modulation.linear": "norm.linear",
"pre_norm": "norm.norm",
"final_layer.norm_final": "norm_out.norm",
"final_layer.linear": "proj_out",
"fc1": "net.0.proj",
"fc2": "net.2",
"input_embedder": "proj_in",
}
TRANSFORMER_SPECIAL_KEYS_REMAP = {
"txt_in": remap_txt_in_,
"img_attn_qkv": remap_img_attn_qkv_,
"txt_attn_qkv": remap_txt_attn_qkv_,
"single_blocks": remap_single_transformer_blocks_,
"final_layer.adaLN_modulation.1": remap_norm_scale_shift_,
}
# Some folks attempt to make their state dict compatible with diffusers by adding "transformer." prefix to all keys
# and use their custom code. To make sure both "original" and "attempted diffusers" loras work as expected, we make
# sure that both follow the same initial format by stripping off the "transformer." prefix.
for key in list(converted_state_dict.keys()):
if key.startswith("transformer."):
converted_state_dict[key[len("transformer.") :]] = converted_state_dict.pop(key)
if key.startswith("diffusion_model."):
converted_state_dict[key[len("diffusion_model.") :]] = converted_state_dict.pop(key)
# Rename and remap the state dict keys
for key in list(converted_state_dict.keys()):
new_key = key[:]
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
new_key = new_key.replace(replace_key, rename_key)
converted_state_dict[new_key] = converted_state_dict.pop(key)
for key in list(converted_state_dict.keys()):
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
if special_key not in key:
continue
handler_fn_inplace(key, converted_state_dict)
# Add back the "transformer." prefix
for key in list(converted_state_dict.keys()):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)
return converted_state_dict
def _convert_non_diffusers_lumina2_lora_to_diffusers(state_dict):
# Remove "diffusion_model." prefix from keys.
state_dict = {k[len("diffusion_model.") :]: v for k, v in state_dict.items()}
converted_state_dict = {}
def get_num_layers(keys, pattern):
layers = set()
for key in keys:
match = re.search(pattern, key)
if match:
layers.add(int(match.group(1)))
return len(layers)
def process_block(prefix, index, convert_norm):
# Process attention qkv: pop lora_A and lora_B weights.
lora_down = state_dict.pop(f"{prefix}.{index}.attention.qkv.lora_A.weight")
lora_up = state_dict.pop(f"{prefix}.{index}.attention.qkv.lora_B.weight")
for attn_key in ["to_q", "to_k", "to_v"]:
converted_state_dict[f"{prefix}.{index}.attn.{attn_key}.lora_A.weight"] = lora_down
for attn_key, weight in zip(["to_q", "to_k", "to_v"], torch.split(lora_up, [2304, 768, 768], dim=0)):
converted_state_dict[f"{prefix}.{index}.attn.{attn_key}.lora_B.weight"] = weight
# Process attention out weights.
converted_state_dict[f"{prefix}.{index}.attn.to_out.0.lora_A.weight"] = state_dict.pop(
f"{prefix}.{index}.attention.out.lora_A.weight"
)
converted_state_dict[f"{prefix}.{index}.attn.to_out.0.lora_B.weight"] = state_dict.pop(
f"{prefix}.{index}.attention.out.lora_B.weight"
)
# Process feed-forward weights for layers 1, 2, and 3.
for layer in range(1, 4):
converted_state_dict[f"{prefix}.{index}.feed_forward.linear_{layer}.lora_A.weight"] = state_dict.pop(
f"{prefix}.{index}.feed_forward.w{layer}.lora_A.weight"
)
converted_state_dict[f"{prefix}.{index}.feed_forward.linear_{layer}.lora_B.weight"] = state_dict.pop(
f"{prefix}.{index}.feed_forward.w{layer}.lora_B.weight"
)
if convert_norm:
converted_state_dict[f"{prefix}.{index}.norm1.linear.lora_A.weight"] = state_dict.pop(
f"{prefix}.{index}.adaLN_modulation.1.lora_A.weight"
)
converted_state_dict[f"{prefix}.{index}.norm1.linear.lora_B.weight"] = state_dict.pop(
f"{prefix}.{index}.adaLN_modulation.1.lora_B.weight"
)
noise_refiner_pattern = r"noise_refiner\.(\d+)\."
num_noise_refiner_layers = get_num_layers(state_dict.keys(), noise_refiner_pattern)
for i in range(num_noise_refiner_layers):
process_block("noise_refiner", i, convert_norm=True)
context_refiner_pattern = r"context_refiner\.(\d+)\."
num_context_refiner_layers = get_num_layers(state_dict.keys(), context_refiner_pattern)
for i in range(num_context_refiner_layers):
process_block("context_refiner", i, convert_norm=False)
core_transformer_pattern = r"layers\.(\d+)\."
num_core_transformer_layers = get_num_layers(state_dict.keys(), core_transformer_pattern)
for i in range(num_core_transformer_layers):
process_block("layers", i, convert_norm=True)
if len(state_dict) > 0:
raise ValueError(f"`state_dict` should be empty at this point but has {state_dict.keys()=}")
for key in list(converted_state_dict.keys()):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)
return converted_state_dict
def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
converted_state_dict = {}
original_state_dict = {k[len("diffusion_model.") :]: v for k, v in state_dict.items()}
num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in original_state_dict if "blocks." in k})
is_i2v_lora = any("k_img" in k for k in original_state_dict) and any("v_img" in k for k in original_state_dict)
lora_down_key = "lora_A" if any("lora_A" in k for k in original_state_dict) else "lora_down"
lora_up_key = "lora_B" if any("lora_B" in k for k in original_state_dict) else "lora_up"
diff_keys = [k for k in original_state_dict if k.endswith((".diff_b", ".diff"))]
if diff_keys:
for diff_k in diff_keys:
param = original_state_dict[diff_k]
all_zero = torch.all(param == 0).item()
if all_zero:
logger.debug(f"Removed {diff_k} key from the state dict as it's all zeros.")
original_state_dict.pop(diff_k)
# For the `diff_b` keys, we treat them as lora_bias.
# https://huggingface.co/docs/peft/main/en/package_reference/lora#peft.LoraConfig.lora_bias
for i in range(num_blocks):
# Self-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.{lora_up_key}.weight"
)
if f"blocks.{i}.self_attn.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.diff_b"
)
# Cross-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
)
if f"blocks.{i}.cross_attn.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.diff_b"
)
if is_i2v_lora:
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
)
if f"blocks.{i}.cross_attn.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.diff_b"
)
# FFN
for o, c in zip(["ffn.0", "ffn.2"], ["net.0.proj", "net.2"]):
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.{o}.{lora_up_key}.weight"
)
if f"blocks.{i}.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.{o}.diff_b"
)
# Remaining.
if original_state_dict:
if any("time_projection" in k for k in original_state_dict):
converted_state_dict["condition_embedder.time_proj.lora_A.weight"] = original_state_dict.pop(
f"time_projection.1.{lora_down_key}.weight"
)
converted_state_dict["condition_embedder.time_proj.lora_B.weight"] = original_state_dict.pop(
f"time_projection.1.{lora_up_key}.weight"
)
if "time_projection.1.diff_b" in original_state_dict:
converted_state_dict["condition_embedder.time_proj.lora_B.bias"] = original_state_dict.pop(
"time_projection.1.diff_b"
)
if any("head.head" in k for k in state_dict):
converted_state_dict["proj_out.lora_A.weight"] = original_state_dict.pop(
f"head.head.{lora_down_key}.weight"
)
converted_state_dict["proj_out.lora_B.weight"] = original_state_dict.pop(f"head.head.{lora_up_key}.weight")
if "head.head.diff_b" in original_state_dict:
converted_state_dict["proj_out.lora_B.bias"] = original_state_dict.pop("head.head.diff_b")
for text_time in ["text_embedding", "time_embedding"]:
if any(text_time in k for k in original_state_dict):
for b_n in [0, 2]:
diffusers_b_n = 1 if b_n == 0 else 2
diffusers_name = (
"condition_embedder.text_embedder"
if text_time == "text_embedding"
else "condition_embedder.time_embedder"
)
if any(f"{text_time}.{b_n}" in k for k in original_state_dict):
converted_state_dict[f"{diffusers_name}.linear_{diffusers_b_n}.lora_A.weight"] = (
original_state_dict.pop(f"{text_time}.{b_n}.{lora_down_key}.weight")
)
converted_state_dict[f"{diffusers_name}.linear_{diffusers_b_n}.lora_B.weight"] = (
original_state_dict.pop(f"{text_time}.{b_n}.{lora_up_key}.weight")
)
if f"{text_time}.{b_n}.diff_b" in original_state_dict:
converted_state_dict[f"{diffusers_name}.linear_{diffusers_b_n}.lora_B.bias"] = (
original_state_dict.pop(f"{text_time}.{b_n}.diff_b")
)
if len(original_state_dict) > 0:
diff = all(".diff" in k for k in original_state_dict)
if diff:
diff_keys = {k for k in original_state_dict if k.endswith(".diff")}
if not all("lora" not in k for k in diff_keys):
raise ValueError
logger.info(
"The remaining `state_dict` contains `diff` keys which we do not handle yet. If you see performance issues, please file an issue: "
"https://github.com/huggingface/diffusers//issues/new"
)
else:
raise ValueError(f"`state_dict` should be empty at this point but has {original_state_dict.keys()=}")
for key in list(converted_state_dict.keys()):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)
return converted_state_dict
def _convert_musubi_wan_lora_to_diffusers(state_dict):
# https://github.com/kohya-ss/musubi-tuner
converted_state_dict = {}
original_state_dict = {k[len("lora_unet_") :]: v for k, v in state_dict.items()}
num_blocks = len({k.split("blocks_")[1].split("_")[0] for k in original_state_dict})
is_i2v_lora = any("k_img" in k for k in original_state_dict) and any("v_img" in k for k in original_state_dict)
def get_alpha_scales(down_weight, key):
rank = down_weight.shape[0]
alpha = original_state_dict.pop(key + ".alpha").item()
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
return scale_down, scale_up
for i in range(num_blocks):
# Self-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
down_weight = original_state_dict.pop(f"blocks_{i}_self_attn_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_self_attn_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_self_attn_{o}")
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.weight"] = up_weight * scale_up
# Cross-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
down_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_cross_attn_{o}")
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = up_weight * scale_up
if is_i2v_lora:
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
down_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_cross_attn_{o}")
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = up_weight * scale_up
# FFN
for o, c in zip(["ffn_0", "ffn_2"], ["net.0.proj", "net.2"]):
down_weight = original_state_dict.pop(f"blocks_{i}_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_{o}")
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.weight"] = up_weight * scale_up
if len(original_state_dict) > 0:
raise ValueError(f"`state_dict` should be empty at this point but has {original_state_dict.keys()=}")
for key in list(converted_state_dict.keys()):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)
return converted_state_dict
def _convert_non_diffusers_hidream_lora_to_diffusers(state_dict, non_diffusers_prefix="diffusion_model"):
if not all(k.startswith(non_diffusers_prefix) for k in state_dict):
raise ValueError("Invalid LoRA state dict for HiDream.")
converted_state_dict = {k.removeprefix(f"{non_diffusers_prefix}."): v for k, v in state_dict.items()}
converted_state_dict = {f"transformer.{k}": v for k, v in converted_state_dict.items()}
return converted_state_dict
def _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict, non_diffusers_prefix="diffusion_model"):
if not all(k.startswith(f"{non_diffusers_prefix}.") for k in state_dict):
raise ValueError("Invalid LoRA state dict for LTX-Video.")
converted_state_dict = {k.removeprefix(f"{non_diffusers_prefix}."): v for k, v in state_dict.items()}
converted_state_dict = {f"transformer.{k}": v for k, v in converted_state_dict.items()}
return converted_state_dict