Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from diffusers import AutoencoderKLMagvit | |
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device | |
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
enable_full_determinism() | |
class AutoencoderKLMagvitTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
model_class = AutoencoderKLMagvit | |
main_input_name = "sample" | |
base_precision = 1e-2 | |
def get_autoencoder_kl_magvit_config(self): | |
return { | |
"in_channels": 3, | |
"latent_channels": 4, | |
"out_channels": 3, | |
"block_out_channels": [8, 8, 8, 8], | |
"down_block_types": [ | |
"SpatialDownBlock3D", | |
"SpatialTemporalDownBlock3D", | |
"SpatialTemporalDownBlock3D", | |
"SpatialTemporalDownBlock3D", | |
], | |
"up_block_types": [ | |
"SpatialUpBlock3D", | |
"SpatialTemporalUpBlock3D", | |
"SpatialTemporalUpBlock3D", | |
"SpatialTemporalUpBlock3D", | |
], | |
"layers_per_block": 1, | |
"norm_num_groups": 8, | |
"spatial_group_norm": True, | |
} | |
def dummy_input(self): | |
batch_size = 2 | |
num_frames = 9 | |
num_channels = 3 | |
height = 16 | |
width = 16 | |
image = floats_tensor((batch_size, num_channels, num_frames, height, width)).to(torch_device) | |
return {"sample": image} | |
def input_shape(self): | |
return (3, 9, 16, 16) | |
def output_shape(self): | |
return (3, 9, 16, 16) | |
def prepare_init_args_and_inputs_for_common(self): | |
init_dict = self.get_autoencoder_kl_magvit_config() | |
inputs_dict = self.dummy_input | |
return init_dict, inputs_dict | |
def test_gradient_checkpointing_is_applied(self): | |
expected_set = {"EasyAnimateEncoder", "EasyAnimateDecoder"} | |
super().test_gradient_checkpointing_is_applied(expected_set=expected_set) | |
def test_effective_gradient_checkpointing(self): | |
pass | |
def test_forward_with_norm_groups(self): | |
pass | |