Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import json | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import PIL.Image | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
from diffusers import AutoencoderKLCosmos, CosmosTransformer3DModel, CosmosVideoToWorldPipeline, EDMEulerScheduler | |
from diffusers.utils.testing_utils import enable_full_determinism, torch_device | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, to_np | |
from .cosmos_guardrail import DummyCosmosSafetyChecker | |
enable_full_determinism() | |
class CosmosVideoToWorldPipelineWrapper(CosmosVideoToWorldPipeline): | |
def from_pretrained(*args, **kwargs): | |
kwargs["safety_checker"] = DummyCosmosSafetyChecker() | |
return CosmosVideoToWorldPipeline.from_pretrained(*args, **kwargs) | |
class CosmosVideoToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = CosmosVideoToWorldPipelineWrapper | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"image", "video"}) | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
supports_dduf = False | |
test_xformers_attention = False | |
test_layerwise_casting = True | |
test_group_offloading = True | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = CosmosTransformer3DModel( | |
in_channels=4 + 1, | |
out_channels=4, | |
num_attention_heads=2, | |
attention_head_dim=16, | |
num_layers=2, | |
mlp_ratio=2, | |
text_embed_dim=32, | |
adaln_lora_dim=4, | |
max_size=(4, 32, 32), | |
patch_size=(1, 2, 2), | |
rope_scale=(2.0, 1.0, 1.0), | |
concat_padding_mask=True, | |
extra_pos_embed_type="learnable", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKLCosmos( | |
in_channels=3, | |
out_channels=3, | |
latent_channels=4, | |
encoder_block_out_channels=(8, 8, 8, 8), | |
decode_block_out_channels=(8, 8, 8, 8), | |
attention_resolutions=(8,), | |
resolution=64, | |
num_layers=2, | |
patch_size=4, | |
patch_type="haar", | |
scaling_factor=1.0, | |
spatial_compression_ratio=4, | |
temporal_compression_ratio=4, | |
) | |
torch.manual_seed(0) | |
scheduler = EDMEulerScheduler( | |
sigma_min=0.002, | |
sigma_max=80, | |
sigma_data=0.5, | |
sigma_schedule="karras", | |
num_train_timesteps=1000, | |
prediction_type="epsilon", | |
rho=7.0, | |
final_sigmas_type="sigma_min", | |
) | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
# We cannot run the Cosmos Guardrail for fast tests due to the large model size | |
"safety_checker": DummyCosmosSafetyChecker(), | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image_height = 32 | |
image_width = 32 | |
image = PIL.Image.new("RGB", (image_width, image_height)) | |
inputs = { | |
"image": image, | |
"prompt": "dance monkey", | |
"negative_prompt": "bad quality", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 3.0, | |
"height": image_height, | |
"width": image_width, | |
"num_frames": 9, | |
"max_sequence_length": 16, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
video = pipe(**inputs).frames | |
generated_video = video[0] | |
self.assertEqual(generated_video.shape, (9, 3, 32, 32)) | |
expected_video = torch.randn(9, 3, 32, 32) | |
max_diff = np.abs(generated_video - expected_video).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_components_function(self): | |
init_components = self.get_dummy_components() | |
init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))} | |
pipe = self.pipeline_class(**init_components) | |
self.assertTrue(hasattr(pipe, "components")) | |
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |
def test_callback_inputs(self): | |
sig = inspect.signature(self.pipeline_class.__call__) | |
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
has_callback_step_end = "callback_on_step_end" in sig.parameters | |
if not (has_callback_tensor_inputs and has_callback_step_end): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
self.assertTrue( | |
hasattr(pipe, "_callback_tensor_inputs"), | |
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
) | |
def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
def callback_inputs_all(pipe, i, t, callback_kwargs): | |
for tensor_name in pipe._callback_tensor_inputs: | |
assert tensor_name in callback_kwargs | |
# iterate over callback args | |
for tensor_name, tensor_value in callback_kwargs.items(): | |
# check that we're only passing in allowed tensor inputs | |
assert tensor_name in pipe._callback_tensor_inputs | |
return callback_kwargs | |
inputs = self.get_dummy_inputs(torch_device) | |
# Test passing in a subset | |
inputs["callback_on_step_end"] = callback_inputs_subset | |
inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
output = pipe(**inputs)[0] | |
# Test passing in a everything | |
inputs["callback_on_step_end"] = callback_inputs_all | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
is_last = i == (pipe.num_timesteps - 1) | |
if is_last: | |
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
return callback_kwargs | |
inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
output = pipe(**inputs)[0] | |
assert output.abs().sum() < 1e10 | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-2) | |
def test_attention_slicing_forward_pass( | |
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
): | |
if not self.test_attention_slicing: | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for component in pipe.components.values(): | |
if hasattr(component, "set_default_attn_processor"): | |
component.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
generator_device = "cpu" | |
inputs = self.get_dummy_inputs(generator_device) | |
output_without_slicing = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=1) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing1 = pipe(**inputs)[0] | |
pipe.enable_attention_slicing(slice_size=2) | |
inputs = self.get_dummy_inputs(generator_device) | |
output_with_slicing2 = pipe(**inputs)[0] | |
if test_max_difference: | |
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
self.assertLess( | |
max(max_diff1, max_diff2), | |
expected_max_diff, | |
"Attention slicing should not affect the inference results", | |
) | |
def test_vae_tiling(self, expected_diff_max: float = 0.2): | |
generator_device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to("cpu") | |
pipe.set_progress_bar_config(disable=None) | |
# Without tiling | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_without_tiling = pipe(**inputs)[0] | |
# With tiling | |
pipe.vae.enable_tiling( | |
tile_sample_min_height=96, | |
tile_sample_min_width=96, | |
tile_sample_stride_height=64, | |
tile_sample_stride_width=64, | |
) | |
inputs = self.get_dummy_inputs(generator_device) | |
inputs["height"] = inputs["width"] = 128 | |
output_with_tiling = pipe(**inputs)[0] | |
self.assertLess( | |
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
expected_diff_max, | |
"VAE tiling should not affect the inference results", | |
) | |
def test_save_load_optional_components(self, expected_max_difference=1e-4): | |
self.pipeline_class._optional_components.remove("safety_checker") | |
super().test_save_load_optional_components(expected_max_difference=expected_max_difference) | |
self.pipeline_class._optional_components.append("safety_checker") | |
def test_serialization_with_variants(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
model_components = [ | |
component_name | |
for component_name, component in pipe.components.items() | |
if isinstance(component, torch.nn.Module) | |
] | |
model_components.remove("safety_checker") | |
variant = "fp16" | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False) | |
with open(f"{tmpdir}/model_index.json", "r") as f: | |
config = json.load(f) | |
for subfolder in os.listdir(tmpdir): | |
if not os.path.isfile(subfolder) and subfolder in model_components: | |
folder_path = os.path.join(tmpdir, subfolder) | |
is_folder = os.path.isdir(folder_path) and subfolder in config | |
assert is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)) | |
def test_torch_dtype_dict(self): | |
components = self.get_dummy_components() | |
if not components: | |
self.skipTest("No dummy components defined.") | |
pipe = self.pipeline_class(**components) | |
specified_key = next(iter(components.keys())) | |
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname: | |
pipe.save_pretrained(tmpdirname, safe_serialization=False) | |
torch_dtype_dict = {specified_key: torch.bfloat16, "default": torch.float16} | |
loaded_pipe = self.pipeline_class.from_pretrained( | |
tmpdirname, safety_checker=DummyCosmosSafetyChecker(), torch_dtype=torch_dtype_dict | |
) | |
for name, component in loaded_pipe.components.items(): | |
if name == "safety_checker": | |
continue | |
if isinstance(component, torch.nn.Module) and hasattr(component, "dtype"): | |
expected_dtype = torch_dtype_dict.get(name, torch_dtype_dict.get("default", torch.float32)) | |
self.assertEqual( | |
component.dtype, | |
expected_dtype, | |
f"Component '{name}' has dtype {component.dtype} but expected {expected_dtype}", | |
) | |
def test_encode_prompt_works_in_isolation(self): | |
pass | |