Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
CLIPTextConfig, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
LlamaForCausalLM, | |
T5EncoderModel, | |
) | |
from diffusers import ( | |
AutoencoderKL, | |
FlowMatchEulerDiscreteScheduler, | |
HiDreamImagePipeline, | |
HiDreamImageTransformer2DModel, | |
) | |
from diffusers.utils.testing_utils import enable_full_determinism | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = HiDreamImagePipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "prompt_embeds", "negative_prompt_embeds"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params | |
test_layerwise_casting = True | |
supports_dduf = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = HiDreamImageTransformer2DModel( | |
patch_size=2, | |
in_channels=4, | |
out_channels=4, | |
num_layers=1, | |
num_single_layers=1, | |
attention_head_dim=8, | |
num_attention_heads=4, | |
caption_channels=[32, 16], | |
text_emb_dim=64, | |
num_routed_experts=4, | |
num_activated_experts=2, | |
axes_dims_rope=(4, 2, 2), | |
max_resolution=(32, 32), | |
llama_layers=(0, 1), | |
).eval() | |
torch.manual_seed(0) | |
vae = AutoencoderKL(scaling_factor=0.3611, shift_factor=0.1159) | |
clip_text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
hidden_act="gelu", | |
projection_dim=32, | |
max_position_embeddings=128, | |
) | |
torch.manual_seed(0) | |
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) | |
torch.manual_seed(0) | |
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") | |
text_encoder_4.generation_config.pad_token_id = 1 | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer_4 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
components = { | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"text_encoder_3": text_encoder_3, | |
"tokenizer_3": tokenizer_3, | |
"text_encoder_4": text_encoder_4, | |
"tokenizer_4": tokenizer_4, | |
"transformer": transformer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs)[0] | |
generated_image = image[0] | |
self.assertEqual(generated_image.shape, (128, 128, 3)) | |
expected_image = torch.randn(128, 128, 3).numpy() | |
max_diff = np.abs(generated_image - expected_image).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-4) | |