Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import unittest | |
import torch | |
from diffusers import ( | |
SanaTransformer2DModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
enable_full_determinism, | |
require_torch_accelerator, | |
torch_device, | |
) | |
enable_full_determinism() | |
class SanaTransformer2DModelSingleFileTests(unittest.TestCase): | |
model_class = SanaTransformer2DModel | |
ckpt_path = ( | |
"https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px/blob/main/checkpoints/Sana_1600M_1024px.pth" | |
) | |
alternate_keys_ckpt_paths = [ | |
"https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px/blob/main/checkpoints/Sana_1600M_1024px.pth" | |
] | |
repo_id = "Efficient-Large-Model/Sana_1600M_1024px_diffusers" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def test_single_file_components(self): | |
model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer") | |
model_single_file = self.model_class.from_single_file(self.ckpt_path) | |
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] | |
for param_name, param_value in model_single_file.config.items(): | |
if param_name in PARAMS_TO_IGNORE: | |
continue | |
assert model.config[param_name] == param_value, ( | |
f"{param_name} differs between single file loading and pretrained loading" | |
) | |
def test_checkpoint_loading(self): | |
for ckpt_path in self.alternate_keys_ckpt_paths: | |
torch.cuda.empty_cache() | |
model = self.model_class.from_single_file(ckpt_path) | |
del model | |
gc.collect() | |
torch.cuda.empty_cache() | |