Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Convert a CogView4 checkpoint from Megatron to the Diffusers format. | |
Example usage: | |
python scripts/convert_cogview4_to_diffusers.py \ | |
--transformer_checkpoint_path 'your path/cogview4_6b/mp_rank_00/model_optim_rng.pt' \ | |
--vae_checkpoint_path 'your path/cogview4_6b/imagekl_ch16.pt' \ | |
--output_path "THUDM/CogView4-6B" \ | |
--dtype "bf16" | |
Arguments: | |
--transformer_checkpoint_path: Path to Transformer state dict. | |
--vae_checkpoint_path: Path to VAE state dict. | |
--output_path: The path to save the converted model. | |
--push_to_hub: Whether to push the converted checkpoint to the HF Hub or not. Defaults to `False`. | |
--text_encoder_cache_dir: Cache directory where text encoder is located. Defaults to None, which means HF_HOME will be used. | |
--dtype: The dtype to save the model in (default: "bf16", options: "fp16", "bf16", "fp32"). If None, the dtype of the state dict is considered. | |
Default is "bf16" because CogView4 uses bfloat16 for training. | |
Note: You must provide either --transformer_checkpoint_path or --vae_checkpoint_path. | |
""" | |
import argparse | |
import torch | |
from tqdm import tqdm | |
from transformers import GlmModel, PreTrainedTokenizerFast | |
from diffusers import ( | |
AutoencoderKL, | |
CogView4ControlPipeline, | |
CogView4Pipeline, | |
CogView4Transformer2DModel, | |
FlowMatchEulerDiscreteScheduler, | |
) | |
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--transformer_checkpoint_path", | |
default=None, | |
type=str, | |
help="Path to Megatron (not SAT) Transformer checkpoint, e.g., 'model_optim_rng.pt'.", | |
) | |
parser.add_argument( | |
"--vae_checkpoint_path", | |
default=None, | |
type=str, | |
help="(Optional) Path to VAE checkpoint, e.g., 'imagekl_ch16.pt'.", | |
) | |
parser.add_argument( | |
"--output_path", | |
required=True, | |
type=str, | |
help="Directory to save the final Diffusers format pipeline.", | |
) | |
parser.add_argument( | |
"--push_to_hub", | |
action="store_true", | |
default=False, | |
help="Whether to push the converted model to the HuggingFace Hub.", | |
) | |
parser.add_argument( | |
"--text_encoder_cache_dir", | |
type=str, | |
default=None, | |
help="Specify the cache directory for the text encoder.", | |
) | |
parser.add_argument( | |
"--dtype", | |
type=str, | |
default="bf16", | |
choices=["fp16", "bf16", "fp32"], | |
help="Data type to save the model in.", | |
) | |
parser.add_argument( | |
"--num_layers", | |
type=int, | |
default=28, | |
help="Number of Transformer layers (e.g., 28, 48...).", | |
) | |
parser.add_argument( | |
"--num_heads", | |
type=int, | |
default=32, | |
help="Number of attention heads.", | |
) | |
parser.add_argument( | |
"--hidden_size", | |
type=int, | |
default=4096, | |
help="Transformer hidden dimension size.", | |
) | |
parser.add_argument( | |
"--attention_head_dim", | |
type=int, | |
default=128, | |
help="Dimension of each attention head.", | |
) | |
parser.add_argument( | |
"--time_embed_dim", | |
type=int, | |
default=512, | |
help="Dimension of time embeddings.", | |
) | |
parser.add_argument( | |
"--condition_dim", | |
type=int, | |
default=256, | |
help="Dimension of condition embeddings.", | |
) | |
parser.add_argument( | |
"--pos_embed_max_size", | |
type=int, | |
default=128, | |
help="Maximum size for positional embeddings.", | |
) | |
parser.add_argument( | |
"--control", | |
action="store_true", | |
default=False, | |
help="Whether to use control model.", | |
) | |
args = parser.parse_args() | |
def swap_scale_shift(weight, dim): | |
""" | |
Swap the scale and shift components in the weight tensor. | |
Args: | |
weight (torch.Tensor): The original weight tensor. | |
dim (int): The dimension along which to split. | |
Returns: | |
torch.Tensor: The modified weight tensor with scale and shift swapped. | |
""" | |
shift, scale = weight.chunk(2, dim=dim) | |
new_weight = torch.cat([scale, shift], dim=dim) | |
return new_weight | |
def convert_megatron_transformer_checkpoint_to_diffusers( | |
ckpt_path: str, | |
num_layers: int, | |
num_heads: int, | |
hidden_size: int, | |
): | |
""" | |
Convert a Megatron Transformer checkpoint to Diffusers format. | |
Args: | |
ckpt_path (str): Path to the Megatron Transformer checkpoint. | |
num_layers (int): Number of Transformer layers. | |
num_heads (int): Number of attention heads. | |
hidden_size (int): Hidden size of the Transformer. | |
Returns: | |
dict: The converted state dictionary compatible with Diffusers. | |
""" | |
ckpt = torch.load(ckpt_path, map_location="cpu", weights_only=False) | |
mega = ckpt["model"] | |
new_state_dict = {} | |
# Patch Embedding | |
new_state_dict["patch_embed.proj.weight"] = mega["encoder_expand_linear.weight"].reshape( | |
hidden_size, 128 if args.control else 64 | |
) | |
new_state_dict["patch_embed.proj.bias"] = mega["encoder_expand_linear.bias"] | |
new_state_dict["patch_embed.text_proj.weight"] = mega["text_projector.weight"] | |
new_state_dict["patch_embed.text_proj.bias"] = mega["text_projector.bias"] | |
# Time Condition Embedding | |
new_state_dict["time_condition_embed.timestep_embedder.linear_1.weight"] = mega[ | |
"time_embedding.time_embed.0.weight" | |
] | |
new_state_dict["time_condition_embed.timestep_embedder.linear_1.bias"] = mega["time_embedding.time_embed.0.bias"] | |
new_state_dict["time_condition_embed.timestep_embedder.linear_2.weight"] = mega[ | |
"time_embedding.time_embed.2.weight" | |
] | |
new_state_dict["time_condition_embed.timestep_embedder.linear_2.bias"] = mega["time_embedding.time_embed.2.bias"] | |
new_state_dict["time_condition_embed.condition_embedder.linear_1.weight"] = mega[ | |
"label_embedding.label_embed.0.weight" | |
] | |
new_state_dict["time_condition_embed.condition_embedder.linear_1.bias"] = mega[ | |
"label_embedding.label_embed.0.bias" | |
] | |
new_state_dict["time_condition_embed.condition_embedder.linear_2.weight"] = mega[ | |
"label_embedding.label_embed.2.weight" | |
] | |
new_state_dict["time_condition_embed.condition_embedder.linear_2.bias"] = mega[ | |
"label_embedding.label_embed.2.bias" | |
] | |
# Convert each Transformer layer | |
for i in tqdm(range(num_layers), desc="Converting layers (Megatron->Diffusers)"): | |
block_prefix = f"transformer_blocks.{i}." | |
# AdaLayerNorm | |
new_state_dict[block_prefix + "norm1.linear.weight"] = mega[f"decoder.layers.{i}.adaln.weight"] | |
new_state_dict[block_prefix + "norm1.linear.bias"] = mega[f"decoder.layers.{i}.adaln.bias"] | |
qkv_weight = mega[f"decoder.layers.{i}.self_attention.linear_qkv.weight"] | |
qkv_bias = mega[f"decoder.layers.{i}.self_attention.linear_qkv.bias"] | |
# Reshape to match SAT logic | |
qkv_weight = qkv_weight.view(num_heads, 3, hidden_size // num_heads, hidden_size) | |
qkv_weight = qkv_weight.permute(1, 0, 2, 3).reshape(3 * hidden_size, hidden_size) | |
qkv_bias = qkv_bias.view(num_heads, 3, hidden_size // num_heads) | |
qkv_bias = qkv_bias.permute(1, 0, 2).reshape(3 * hidden_size) | |
# Assign to Diffusers keys | |
q, k, v = torch.chunk(qkv_weight, 3, dim=0) | |
qb, kb, vb = torch.chunk(qkv_bias, 3, dim=0) | |
new_state_dict[block_prefix + "attn1.to_q.weight"] = q | |
new_state_dict[block_prefix + "attn1.to_q.bias"] = qb | |
new_state_dict[block_prefix + "attn1.to_k.weight"] = k | |
new_state_dict[block_prefix + "attn1.to_k.bias"] = kb | |
new_state_dict[block_prefix + "attn1.to_v.weight"] = v | |
new_state_dict[block_prefix + "attn1.to_v.bias"] = vb | |
# Attention Output | |
new_state_dict[block_prefix + "attn1.to_out.0.weight"] = mega[ | |
f"decoder.layers.{i}.self_attention.linear_proj.weight" | |
] | |
new_state_dict[block_prefix + "attn1.to_out.0.bias"] = mega[ | |
f"decoder.layers.{i}.self_attention.linear_proj.bias" | |
] | |
# MLP | |
new_state_dict[block_prefix + "ff.net.0.proj.weight"] = mega[f"decoder.layers.{i}.mlp.linear_fc1.weight"] | |
new_state_dict[block_prefix + "ff.net.0.proj.bias"] = mega[f"decoder.layers.{i}.mlp.linear_fc1.bias"] | |
new_state_dict[block_prefix + "ff.net.2.weight"] = mega[f"decoder.layers.{i}.mlp.linear_fc2.weight"] | |
new_state_dict[block_prefix + "ff.net.2.bias"] = mega[f"decoder.layers.{i}.mlp.linear_fc2.bias"] | |
# Final Layers | |
new_state_dict["norm_out.linear.weight"] = swap_scale_shift(mega["adaln_final.weight"], dim=0) | |
new_state_dict["norm_out.linear.bias"] = swap_scale_shift(mega["adaln_final.bias"], dim=0) | |
new_state_dict["proj_out.weight"] = mega["output_projector.weight"] | |
new_state_dict["proj_out.bias"] = mega["output_projector.bias"] | |
return new_state_dict | |
def convert_cogview4_vae_checkpoint_to_diffusers(ckpt_path, vae_config): | |
""" | |
Convert a CogView4 VAE checkpoint to Diffusers format. | |
Args: | |
ckpt_path (str): Path to the VAE checkpoint. | |
vae_config (dict): Configuration dictionary for the VAE. | |
Returns: | |
dict: The converted VAE state dictionary compatible with Diffusers. | |
""" | |
original_state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)["state_dict"] | |
return convert_ldm_vae_checkpoint(original_state_dict, vae_config) | |
def main(args): | |
""" | |
Main function to convert CogView4 checkpoints to Diffusers format. | |
Args: | |
args (argparse.Namespace): Parsed command-line arguments. | |
""" | |
# Determine the desired data type | |
if args.dtype == "fp16": | |
dtype = torch.float16 | |
elif args.dtype == "bf16": | |
dtype = torch.bfloat16 | |
elif args.dtype == "fp32": | |
dtype = torch.float32 | |
else: | |
raise ValueError(f"Unsupported dtype: {args.dtype}") | |
transformer = None | |
vae = None | |
# Convert Transformer checkpoint if provided | |
if args.transformer_checkpoint_path is not None: | |
converted_transformer_state_dict = convert_megatron_transformer_checkpoint_to_diffusers( | |
ckpt_path=args.transformer_checkpoint_path, | |
num_layers=args.num_layers, | |
num_heads=args.num_heads, | |
hidden_size=args.hidden_size, | |
) | |
transformer = CogView4Transformer2DModel( | |
patch_size=2, | |
in_channels=32 if args.control else 16, | |
num_layers=args.num_layers, | |
attention_head_dim=args.attention_head_dim, | |
num_attention_heads=args.num_heads, | |
out_channels=16, | |
text_embed_dim=args.hidden_size, | |
time_embed_dim=args.time_embed_dim, | |
condition_dim=args.condition_dim, | |
pos_embed_max_size=args.pos_embed_max_size, | |
) | |
transformer.load_state_dict(converted_transformer_state_dict, strict=True) | |
# Convert to the specified dtype | |
if dtype is not None: | |
transformer = transformer.to(dtype=dtype) | |
# Convert VAE checkpoint if provided | |
if args.vae_checkpoint_path is not None: | |
vae_config = { | |
"in_channels": 3, | |
"out_channels": 3, | |
"down_block_types": ("DownEncoderBlock2D",) * 4, | |
"up_block_types": ("UpDecoderBlock2D",) * 4, | |
"block_out_channels": (128, 512, 1024, 1024), | |
"layers_per_block": 3, | |
"act_fn": "silu", | |
"latent_channels": 16, | |
"norm_num_groups": 32, | |
"sample_size": 1024, | |
"scaling_factor": 1.0, | |
"shift_factor": 0.0, | |
"force_upcast": True, | |
"use_quant_conv": False, | |
"use_post_quant_conv": False, | |
"mid_block_add_attention": False, | |
} | |
converted_vae_state_dict = convert_cogview4_vae_checkpoint_to_diffusers(args.vae_checkpoint_path, vae_config) | |
vae = AutoencoderKL(**vae_config) | |
vae.load_state_dict(converted_vae_state_dict, strict=True) | |
if dtype is not None: | |
vae = vae.to(dtype=dtype) | |
# Load the text encoder and tokenizer | |
text_encoder_id = "THUDM/glm-4-9b-hf" | |
tokenizer = PreTrainedTokenizerFast.from_pretrained(text_encoder_id) | |
text_encoder = GlmModel.from_pretrained( | |
text_encoder_id, | |
cache_dir=args.text_encoder_cache_dir, | |
torch_dtype=torch.bfloat16 if args.dtype == "bf16" else torch.float32, | |
) | |
for param in text_encoder.parameters(): | |
param.data = param.data.contiguous() | |
# Initialize the scheduler | |
scheduler = FlowMatchEulerDiscreteScheduler( | |
base_shift=0.25, max_shift=0.75, base_image_seq_len=256, use_dynamic_shifting=True, time_shift_type="linear" | |
) | |
# Create the pipeline | |
if args.control: | |
pipe = CogView4ControlPipeline( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=vae, | |
transformer=transformer, | |
scheduler=scheduler, | |
) | |
else: | |
pipe = CogView4Pipeline( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=vae, | |
transformer=transformer, | |
scheduler=scheduler, | |
) | |
# Save the converted pipeline | |
pipe.save_pretrained( | |
args.output_path, | |
safe_serialization=True, | |
max_shard_size="5GB", | |
push_to_hub=args.push_to_hub, | |
) | |
if __name__ == "__main__": | |
main(args) | |