Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 OmniGen team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
from transformers import LlamaTokenizer | |
from ...image_processor import PipelineImageInput, VaeImageProcessor | |
from ...models.autoencoders import AutoencoderKL | |
from ...models.transformers import OmniGenTransformer2DModel | |
from ...schedulers import FlowMatchEulerDiscreteScheduler | |
from ...utils import is_torch_xla_available, logging, replace_example_docstring | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from .processor_omnigen import OmniGenMultiModalProcessor | |
if is_torch_xla_available(): | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import OmniGenPipeline | |
>>> pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1-diffusers", torch_dtype=torch.bfloat16) | |
>>> pipe.to("cuda") | |
>>> prompt = "A cat holding a sign that says hello world" | |
>>> # Depending on the variant being used, the pipeline call will slightly vary. | |
>>> # Refer to the pipeline documentation for more details. | |
>>> image = pipe(prompt, num_inference_steps=50, guidance_scale=2.5).images[0] | |
>>> image.save("output.png") | |
``` | |
""" | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
r""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class OmniGenPipeline( | |
DiffusionPipeline, | |
): | |
r""" | |
The OmniGen pipeline for multimodal-to-image generation. | |
Reference: https://huggingface.co/papers/2409.11340 | |
Args: | |
transformer ([`OmniGenTransformer2DModel`]): | |
Autoregressive Transformer architecture for OmniGen. | |
scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
tokenizer (`LlamaTokenizer`): | |
Text tokenizer of class. | |
[LlamaTokenizer](https://huggingface.co/docs/transformers/main/model_doc/llama#transformers.LlamaTokenizer). | |
""" | |
model_cpu_offload_seq = "transformer->vae" | |
_optional_components = [] | |
_callback_tensor_inputs = ["latents"] | |
def __init__( | |
self, | |
transformer: OmniGenTransformer2DModel, | |
scheduler: FlowMatchEulerDiscreteScheduler, | |
vae: AutoencoderKL, | |
tokenizer: LlamaTokenizer, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
tokenizer=tokenizer, | |
transformer=transformer, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = ( | |
2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) is not None else 8 | |
) | |
# OmniGen latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
self.multimodal_processor = OmniGenMultiModalProcessor(tokenizer, max_image_size=1024) | |
self.tokenizer_max_length = ( | |
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 120000 | |
) | |
self.default_sample_size = 128 | |
def encode_input_images( | |
self, | |
input_pixel_values: List[torch.Tensor], | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
""" | |
get the continue embedding of input images by VAE | |
Args: | |
input_pixel_values: normalized pixel of input images | |
device: | |
Returns: torch.Tensor | |
""" | |
device = device or self._execution_device | |
dtype = dtype or self.vae.dtype | |
input_img_latents = [] | |
for img in input_pixel_values: | |
img = self.vae.encode(img.to(device, dtype)).latent_dist.sample().mul_(self.vae.config.scaling_factor) | |
input_img_latents.append(img) | |
return input_img_latents | |
def check_inputs( | |
self, | |
prompt, | |
input_images, | |
height, | |
width, | |
use_input_image_size_as_output, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if input_images is not None: | |
if len(input_images) != len(prompt): | |
raise ValueError( | |
f"The number of prompts: {len(prompt)} does not match the number of input images: {len(input_images)}." | |
) | |
for i in range(len(input_images)): | |
if input_images[i] is not None: | |
if not all(f"<img><|image_{k + 1}|></img>" in prompt[i] for k in range(len(input_images[i]))): | |
raise ValueError( | |
f"prompt `{prompt[i]}` doesn't have enough placeholders for the input images `{input_images[i]}`" | |
) | |
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
logger.warning( | |
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
) | |
if use_input_image_size_as_output: | |
if input_images is None or input_images[0] is None: | |
raise ValueError( | |
"`use_input_image_size_as_output` is set to True, but no input image was found. If you are performing a text-to-image task, please set it to False." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.vae.enable_tiling() | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
if latents is not None: | |
return latents.to(device=device, dtype=dtype) | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
return latents | |
def guidance_scale(self): | |
return self._guidance_scale | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
input_images: Union[PipelineImageInput, List[PipelineImageInput]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
max_input_image_size: int = 1024, | |
timesteps: List[int] = None, | |
guidance_scale: float = 2.5, | |
img_guidance_scale: float = 1.6, | |
use_input_image_size_as_output: bool = False, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If the input includes images, need to add | |
placeholders `<img><|image_i|></img>` in the prompt to indicate the position of the i-th images. | |
input_images (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*): | |
The list of input images. We will replace the "<|image_i|>" in prompt with the i-th image in list. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
max_input_image_size (`int`, *optional*, defaults to 1024): | |
the maximum size of input image, which will be used to crop the input image to the maximum size | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 2.5): | |
Guidance scale as defined in [Classifier-Free Diffusion | |
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. | |
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to | |
the text `prompt`, usually at the expense of lower image quality. | |
img_guidance_scale (`float`, *optional*, defaults to 1.6): | |
Defined as equation 3 in [Instrucpix2pix](https://huggingface.co/papers/2211.09800). | |
use_input_image_size_as_output (bool, defaults to False): | |
whether to use the input image size as the output image size, which can be used for single-image input, | |
e.g., image editing task | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned | |
where the first element is a list with the generated images. | |
""" | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
num_cfg = 2 if input_images is not None else 1 | |
use_img_cfg = True if input_images is not None else False | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
input_images = [input_images] | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
input_images, | |
height, | |
width, | |
use_input_image_size_as_output, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._interrupt = False | |
# 2. Define call parameters | |
batch_size = len(prompt) | |
device = self._execution_device | |
# 3. process multi-modal instructions | |
if max_input_image_size != self.multimodal_processor.max_image_size: | |
self.multimodal_processor.reset_max_image_size(max_image_size=max_input_image_size) | |
processed_data = self.multimodal_processor( | |
prompt, | |
input_images, | |
height=height, | |
width=width, | |
use_img_cfg=use_img_cfg, | |
use_input_image_size_as_output=use_input_image_size_as_output, | |
num_images_per_prompt=num_images_per_prompt, | |
) | |
processed_data["input_ids"] = processed_data["input_ids"].to(device) | |
processed_data["attention_mask"] = processed_data["attention_mask"].to(device) | |
processed_data["position_ids"] = processed_data["position_ids"].to(device) | |
# 4. Encode input images | |
input_img_latents = self.encode_input_images(processed_data["input_pixel_values"], device=device) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1, 0, num_inference_steps + 1)[:num_inference_steps] | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas | |
) | |
self._num_timesteps = len(timesteps) | |
# 6. Prepare latents | |
transformer_dtype = self.transformer.dtype | |
if use_input_image_size_as_output: | |
height, width = processed_data["input_pixel_values"][0].shape[-2:] | |
latent_channels = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
latent_channels, | |
height, | |
width, | |
torch.float32, | |
device, | |
generator, | |
latents, | |
) | |
# 8. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * (num_cfg + 1)) | |
latent_model_input = latent_model_input.to(transformer_dtype) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
input_ids=processed_data["input_ids"], | |
input_img_latents=input_img_latents, | |
input_image_sizes=processed_data["input_image_sizes"], | |
attention_mask=processed_data["attention_mask"], | |
position_ids=processed_data["position_ids"], | |
return_dict=False, | |
)[0] | |
if num_cfg == 2: | |
cond, uncond, img_cond = torch.split(noise_pred, len(noise_pred) // 3, dim=0) | |
noise_pred = uncond + img_guidance_scale * (img_cond - uncond) + guidance_scale * (cond - img_cond) | |
else: | |
cond, uncond = torch.split(noise_pred, len(noise_pred) // 2, dim=0) | |
noise_pred = uncond + guidance_scale * (cond - uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
progress_bar.update() | |
if not output_type == "latent": | |
latents = latents.to(self.vae.dtype) | |
latents = latents / self.vae.config.scaling_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
else: | |
image = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |