Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import contextlib | |
import gc | |
import unittest | |
import torch | |
from diffusers.models import ModelMixin | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.utils import get_logger | |
from diffusers.utils.import_utils import compare_versions | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
backend_max_memory_allocated, | |
backend_reset_peak_memory_stats, | |
require_torch_accelerator, | |
torch_device, | |
) | |
class DummyBlock(torch.nn.Module): | |
def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None: | |
super().__init__() | |
self.proj_in = torch.nn.Linear(in_features, hidden_features) | |
self.activation = torch.nn.ReLU() | |
self.proj_out = torch.nn.Linear(hidden_features, out_features) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.proj_in(x) | |
x = self.activation(x) | |
x = self.proj_out(x) | |
return x | |
class DummyModel(ModelMixin): | |
def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None: | |
super().__init__() | |
self.linear_1 = torch.nn.Linear(in_features, hidden_features) | |
self.activation = torch.nn.ReLU() | |
self.blocks = torch.nn.ModuleList( | |
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)] | |
) | |
self.linear_2 = torch.nn.Linear(hidden_features, out_features) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.linear_1(x) | |
x = self.activation(x) | |
for block in self.blocks: | |
x = block(x) | |
x = self.linear_2(x) | |
return x | |
# This model implementation contains one type of block (single_blocks) instantiated before another type of block (double_blocks). | |
# The invocation order of these blocks, however, is first the double_blocks and then the single_blocks. | |
# With group offloading implementation before https://github.com/huggingface/diffusers/pull/11375, such a modeling implementation | |
# would result in a device mismatch error because of the assumptions made by the code. The failure case occurs when using: | |
# offload_type="block_level", num_blocks_per_group=2, use_stream=True | |
# Post the linked PR, the implementation will work as expected. | |
class DummyModelWithMultipleBlocks(ModelMixin): | |
def __init__( | |
self, in_features: int, hidden_features: int, out_features: int, num_layers: int, num_single_layers: int | |
) -> None: | |
super().__init__() | |
self.linear_1 = torch.nn.Linear(in_features, hidden_features) | |
self.activation = torch.nn.ReLU() | |
self.single_blocks = torch.nn.ModuleList( | |
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_single_layers)] | |
) | |
self.double_blocks = torch.nn.ModuleList( | |
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)] | |
) | |
self.linear_2 = torch.nn.Linear(hidden_features, out_features) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.linear_1(x) | |
x = self.activation(x) | |
for block in self.double_blocks: | |
x = block(x) | |
for block in self.single_blocks: | |
x = block(x) | |
x = self.linear_2(x) | |
return x | |
class DummyPipeline(DiffusionPipeline): | |
model_cpu_offload_seq = "model" | |
def __init__(self, model: torch.nn.Module) -> None: | |
super().__init__() | |
self.register_modules(model=model) | |
def __call__(self, x: torch.Tensor) -> torch.Tensor: | |
for _ in range(2): | |
x = x + 0.1 * self.model(x) | |
return x | |
class GroupOffloadTests(unittest.TestCase): | |
in_features = 64 | |
hidden_features = 256 | |
out_features = 64 | |
num_layers = 4 | |
def setUp(self): | |
with torch.no_grad(): | |
self.model = self.get_model() | |
self.input = torch.randn((4, self.in_features)).to(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
del self.model | |
del self.input | |
gc.collect() | |
backend_empty_cache(torch_device) | |
backend_reset_peak_memory_stats(torch_device) | |
def get_model(self): | |
torch.manual_seed(0) | |
return DummyModel( | |
in_features=self.in_features, | |
hidden_features=self.hidden_features, | |
out_features=self.out_features, | |
num_layers=self.num_layers, | |
) | |
def test_offloading_forward_pass(self): | |
def run_forward(model): | |
gc.collect() | |
backend_empty_cache(torch_device) | |
backend_reset_peak_memory_stats(torch_device) | |
self.assertTrue( | |
all( | |
module._diffusers_hook.get_hook("group_offloading") is not None | |
for module in model.modules() | |
if hasattr(module, "_diffusers_hook") | |
) | |
) | |
model.eval() | |
output = model(self.input)[0].cpu() | |
max_memory_allocated = backend_max_memory_allocated(torch_device) | |
return output, max_memory_allocated | |
self.model.to(torch_device) | |
output_without_group_offloading, mem_baseline = run_forward(self.model) | |
self.model.to("cpu") | |
model = self.get_model() | |
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3) | |
output_with_group_offloading1, mem1 = run_forward(model) | |
model = self.get_model() | |
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1) | |
output_with_group_offloading2, mem2 = run_forward(model) | |
model = self.get_model() | |
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True) | |
output_with_group_offloading3, mem3 = run_forward(model) | |
model = self.get_model() | |
model.enable_group_offload(torch_device, offload_type="leaf_level") | |
output_with_group_offloading4, mem4 = run_forward(model) | |
model = self.get_model() | |
model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True) | |
output_with_group_offloading5, mem5 = run_forward(model) | |
# Precision assertions - offloading should not impact the output | |
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5)) | |
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5)) | |
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5)) | |
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5)) | |
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5)) | |
# Memory assertions - offloading should reduce memory usage | |
self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline) | |
def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self): | |
if torch.device(torch_device).type not in ["cuda", "xpu"]: | |
return | |
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3) | |
logger = get_logger("diffusers.models.modeling_utils") | |
logger.setLevel("INFO") | |
with self.assertLogs(logger, level="WARNING") as cm: | |
self.model.to(torch_device) | |
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0]) | |
def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self): | |
if torch.device(torch_device).type not in ["cuda", "xpu"]: | |
return | |
pipe = DummyPipeline(self.model) | |
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3) | |
logger = get_logger("diffusers.pipelines.pipeline_utils") | |
logger.setLevel("INFO") | |
with self.assertLogs(logger, level="WARNING") as cm: | |
pipe.to(torch_device) | |
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0]) | |
def test_error_raised_if_streams_used_and_no_accelerator_device(self): | |
torch_accelerator_module = getattr(torch, torch_device, torch.cuda) | |
original_is_available = torch_accelerator_module.is_available | |
torch_accelerator_module.is_available = lambda: False | |
with self.assertRaises(ValueError): | |
self.model.enable_group_offload( | |
onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True | |
) | |
torch_accelerator_module.is_available = original_is_available | |
def test_error_raised_if_supports_group_offloading_false(self): | |
self.model._supports_group_offloading = False | |
with self.assertRaisesRegex(ValueError, "does not support group offloading"): | |
self.model.enable_group_offload(onload_device=torch.device(torch_device)) | |
def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self): | |
pipe = DummyPipeline(self.model) | |
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3) | |
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"): | |
pipe.enable_model_cpu_offload() | |
def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self): | |
pipe = DummyPipeline(self.model) | |
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3) | |
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"): | |
pipe.enable_sequential_cpu_offload() | |
def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self): | |
pipe = DummyPipeline(self.model) | |
pipe.enable_model_cpu_offload() | |
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"): | |
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3) | |
def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self): | |
pipe = DummyPipeline(self.model) | |
pipe.enable_sequential_cpu_offload() | |
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"): | |
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3) | |
def test_block_level_stream_with_invocation_order_different_from_initialization_order(self): | |
if torch.device(torch_device).type not in ["cuda", "xpu"]: | |
return | |
model = DummyModelWithMultipleBlocks( | |
in_features=self.in_features, | |
hidden_features=self.hidden_features, | |
out_features=self.out_features, | |
num_layers=self.num_layers, | |
num_single_layers=self.num_layers + 1, | |
) | |
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True) | |
context = contextlib.nullcontext() | |
if compare_versions("diffusers", "<=", "0.33.0"): | |
# Will raise a device mismatch RuntimeError mentioning weights are on CPU but input is on device | |
context = self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device") | |
with context: | |
model(self.input) | |