Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer | |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, OmniGenPipeline, OmniGenTransformer2DModel | |
from diffusers.utils.testing_utils import ( | |
Expectations, | |
backend_empty_cache, | |
numpy_cosine_similarity_distance, | |
require_torch_accelerator, | |
slow, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
class OmniGenPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = OmniGenPipeline | |
params = frozenset(["prompt", "guidance_scale"]) | |
batch_params = frozenset(["prompt"]) | |
test_layerwise_casting = True | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = OmniGenTransformer2DModel( | |
hidden_size=16, | |
num_attention_heads=4, | |
num_key_value_heads=4, | |
intermediate_size=32, | |
num_layers=1, | |
in_channels=4, | |
time_step_dim=4, | |
rope_scaling={"long_factor": list(range(1, 3)), "short_factor": list(range(1, 3))}, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
block_out_channels=(4, 4, 4, 4), | |
layers_per_block=1, | |
latent_channels=4, | |
norm_num_groups=1, | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler(invert_sigmas=True, num_train_timesteps=1) | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 1, | |
"guidance_scale": 3.0, | |
"output_type": "np", | |
"height": 16, | |
"width": 16, | |
} | |
return inputs | |
def test_inference(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
generated_image = pipe(**inputs).images[0] | |
self.assertEqual(generated_image.shape, (16, 16, 3)) | |
class OmniGenPipelineSlowTests(unittest.TestCase): | |
pipeline_class = OmniGenPipeline | |
repo_id = "shitao/OmniGen-v1-diffusers" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def get_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
return { | |
"prompt": "A photo of a cat", | |
"num_inference_steps": 2, | |
"guidance_scale": 2.5, | |
"output_type": "np", | |
"generator": generator, | |
} | |
def test_omnigen_inference(self): | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16) | |
pipe.enable_model_cpu_offload() | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images[0] | |
image_slice = image[0, :10, :10] | |
expected_slices = Expectations( | |
{ | |
("xpu", 3): np.array( | |
[ | |
[0.05859375, 0.05859375, 0.04492188], | |
[0.04882812, 0.04101562, 0.03320312], | |
[0.04882812, 0.04296875, 0.03125], | |
[0.04296875, 0.0390625, 0.03320312], | |
[0.04296875, 0.03710938, 0.03125], | |
[0.04492188, 0.0390625, 0.03320312], | |
[0.04296875, 0.03710938, 0.03125], | |
[0.04101562, 0.03710938, 0.02734375], | |
[0.04101562, 0.03515625, 0.02734375], | |
[0.04101562, 0.03515625, 0.02929688], | |
], | |
dtype=np.float32, | |
), | |
("cuda", 7): np.array( | |
[ | |
[0.1783447, 0.16772744, 0.14339337], | |
[0.17066911, 0.15521264, 0.13757327], | |
[0.17072496, 0.15531206, 0.13524258], | |
[0.16746324, 0.1564025, 0.13794944], | |
[0.16490817, 0.15258026, 0.13697758], | |
[0.16971767, 0.15826806, 0.13928896], | |
[0.16782972, 0.15547255, 0.13783783], | |
[0.16464645, 0.15281534, 0.13522372], | |
[0.16535294, 0.15301755, 0.13526791], | |
[0.16365296, 0.15092957, 0.13443318], | |
], | |
dtype=np.float32, | |
), | |
("cuda", 8): np.array( | |
[ | |
[0.0546875, 0.05664062, 0.04296875], | |
[0.046875, 0.04101562, 0.03320312], | |
[0.05078125, 0.04296875, 0.03125], | |
[0.04296875, 0.04101562, 0.03320312], | |
[0.0390625, 0.03710938, 0.02929688], | |
[0.04296875, 0.03710938, 0.03125], | |
[0.0390625, 0.03710938, 0.02929688], | |
[0.0390625, 0.03710938, 0.02734375], | |
[0.0390625, 0.03320312, 0.02734375], | |
[0.0390625, 0.03320312, 0.02734375], | |
], | |
dtype=np.float32, | |
), | |
} | |
) | |
expected_slice = expected_slices.get_expectation() | |
max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
assert max_diff < 1e-4 | |