Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional | |
from torch.nn.init import ones_, trunc_normal_, zeros_ | |
def drop_path(x, drop_prob=0.0, training=False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = torch.tensor(1 - drop_prob) | |
shape = (x.size()[0],) + (1,) * (x.ndim - 1) | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype) | |
random_tensor = torch.floor(random_tensor) # binarize | |
output = x.divide(keep_prob) * random_tensor | |
return output | |
class Swish(nn.Module): | |
def __int__(self): | |
super(Swish, self).__int__() | |
def forward(self, x): | |
return x * torch.sigmoid(x) | |
class ConvBNLayer(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, bias_attr=False, groups=1, act=nn.GELU | |
): | |
super().__init__() | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
# weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()), | |
bias=bias_attr, | |
) | |
self.norm = nn.BatchNorm2d(out_channels) | |
self.act = act() | |
def forward(self, inputs): | |
out = self.conv(inputs) | |
out = self.norm(out) | |
out = self.act(out) | |
return out | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class Identity(nn.Module): | |
def __init__(self): | |
super(Identity, self).__init__() | |
def forward(self, input): | |
return input | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
if isinstance(act_layer, str): | |
self.act = Swish() | |
else: | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class ConvMixer(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
HW=(8, 25), | |
local_k=(3, 3), | |
): | |
super().__init__() | |
self.HW = HW | |
self.dim = dim | |
self.local_mixer = nn.Conv2d( | |
dim, | |
dim, | |
local_k, | |
1, | |
(local_k[0] // 2, local_k[1] // 2), | |
groups=num_heads, | |
# weight_attr=ParamAttr(initializer=KaimingNormal()) | |
) | |
def forward(self, x): | |
h = self.HW[0] | |
w = self.HW[1] | |
x = x.transpose([0, 2, 1]).reshape([0, self.dim, h, w]) | |
x = self.local_mixer(x) | |
x = x.flatten(2).transpose([0, 2, 1]) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
mixer="Global", | |
HW=(8, 25), | |
local_k=(7, 11), | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.HW = HW | |
if HW is not None: | |
H = HW[0] | |
W = HW[1] | |
self.N = H * W | |
self.C = dim | |
if mixer == "Local" and HW is not None: | |
hk = local_k[0] | |
wk = local_k[1] | |
mask = torch.ones([H * W, H + hk - 1, W + wk - 1]) | |
for h in range(0, H): | |
for w in range(0, W): | |
mask[h * W + w, h : h + hk, w : w + wk] = 0.0 | |
mask_paddle = mask[:, hk // 2 : H + hk // 2, wk // 2 : W + wk // 2].flatten(1) | |
mask_inf = torch.full([H * W, H * W], fill_value=float("-inf")) | |
mask = torch.where(mask_paddle < 1, mask_paddle, mask_inf) | |
self.mask = mask[None, None, :] | |
# self.mask = mask.unsqueeze([0, 1]) | |
self.mixer = mixer | |
def forward(self, x): | |
if self.HW is not None: | |
N = self.N | |
C = self.C | |
else: | |
_, N, C = x.shape | |
qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C // self.num_heads)).permute((2, 0, 3, 1, 4)) | |
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
attn = q.matmul(k.permute((0, 1, 3, 2))) | |
if self.mixer == "Local": | |
attn += self.mask | |
attn = functional.softmax(attn, dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn.matmul(v)).permute((0, 2, 1, 3)).reshape((-1, N, C)) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mixer="Global", | |
local_mixer=(7, 11), | |
HW=(8, 25), | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer="nn.LayerNorm", | |
epsilon=1e-6, | |
prenorm=True, | |
): | |
super().__init__() | |
if isinstance(norm_layer, str): | |
self.norm1 = eval(norm_layer)(dim, eps=epsilon) | |
else: | |
self.norm1 = norm_layer(dim) | |
if mixer == "Global" or mixer == "Local": | |
self.mixer = Attention( | |
dim, | |
num_heads=num_heads, | |
mixer=mixer, | |
HW=HW, | |
local_k=local_mixer, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
elif mixer == "Conv": | |
self.mixer = ConvMixer(dim, num_heads=num_heads, HW=HW, local_k=local_mixer) | |
else: | |
raise TypeError("The mixer must be one of [Global, Local, Conv]") | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else Identity() | |
if isinstance(norm_layer, str): | |
self.norm2 = eval(norm_layer)(dim, eps=epsilon) | |
else: | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp_ratio = mlp_ratio | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.prenorm = prenorm | |
def forward(self, x): | |
if self.prenorm: | |
x = self.norm1(x + self.drop_path(self.mixer(x))) | |
x = self.norm2(x + self.drop_path(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.mixer(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding""" | |
def __init__(self, img_size=(32, 100), in_channels=3, embed_dim=768, sub_num=2): | |
super().__init__() | |
num_patches = (img_size[1] // (2**sub_num)) * (img_size[0] // (2**sub_num)) | |
self.img_size = img_size | |
self.num_patches = num_patches | |
self.embed_dim = embed_dim | |
self.norm = None | |
if sub_num == 2: | |
self.proj = nn.Sequential( | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=embed_dim // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=False, | |
), | |
ConvBNLayer( | |
in_channels=embed_dim // 2, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=False, | |
), | |
) | |
if sub_num == 3: | |
self.proj = nn.Sequential( | |
ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=embed_dim // 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=False, | |
), | |
ConvBNLayer( | |
in_channels=embed_dim // 4, | |
out_channels=embed_dim // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=False, | |
), | |
ConvBNLayer( | |
in_channels=embed_dim // 2, | |
out_channels=embed_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
act=nn.GELU, | |
bias_attr=False, | |
), | |
) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
assert H == self.img_size[0] and W == self.img_size[1], ( | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
) | |
x = self.proj(x).flatten(2).permute(0, 2, 1) | |
return x | |
class SubSample(nn.Module): | |
def __init__(self, in_channels, out_channels, types="Pool", stride=(2, 1), sub_norm="nn.LayerNorm", act=None): | |
super().__init__() | |
self.types = types | |
if types == "Pool": | |
self.avgpool = nn.AvgPool2d(kernel_size=(3, 5), stride=stride, padding=(1, 2)) | |
self.maxpool = nn.MaxPool2d(kernel_size=(3, 5), stride=stride, padding=(1, 2)) | |
self.proj = nn.Linear(in_channels, out_channels) | |
else: | |
self.conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
# weight_attr=ParamAttr(initializer=KaimingNormal()) | |
) | |
self.norm = eval(sub_norm)(out_channels) | |
if act is not None: | |
self.act = act() | |
else: | |
self.act = None | |
def forward(self, x): | |
if self.types == "Pool": | |
x1 = self.avgpool(x) | |
x2 = self.maxpool(x) | |
x = (x1 + x2) * 0.5 | |
out = self.proj(x.flatten(2).permute((0, 2, 1))) | |
else: | |
x = self.conv(x) | |
out = x.flatten(2).permute((0, 2, 1)) | |
out = self.norm(out) | |
if self.act is not None: | |
out = self.act(out) | |
return out | |
class SVTRNet(nn.Module): | |
def __init__( | |
self, | |
img_size=[48, 100], | |
in_channels=3, | |
embed_dim=[64, 128, 256], | |
depth=[3, 6, 3], | |
num_heads=[2, 4, 8], | |
mixer=["Local"] * 6 + ["Global"] * 6, # Local atten, Global atten, Conv | |
local_mixer=[[7, 11], [7, 11], [7, 11]], | |
patch_merging="Conv", # Conv, Pool, None | |
mlp_ratio=4, | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0.0, | |
last_drop=0.1, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.1, | |
norm_layer="nn.LayerNorm", | |
sub_norm="nn.LayerNorm", | |
epsilon=1e-6, | |
out_channels=192, | |
out_char_num=25, | |
block_unit="Block", | |
act="nn.GELU", | |
last_stage=True, | |
sub_num=2, | |
prenorm=True, | |
use_lenhead=False, | |
**kwargs, | |
): | |
super().__init__() | |
self.img_size = img_size | |
self.embed_dim = embed_dim | |
self.out_channels = out_channels | |
self.prenorm = prenorm | |
patch_merging = None if patch_merging != "Conv" and patch_merging != "Pool" else patch_merging | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, in_channels=in_channels, embed_dim=embed_dim[0], sub_num=sub_num | |
) | |
num_patches = self.patch_embed.num_patches | |
self.HW = [img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)] | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim[0])) | |
# self.pos_embed = self.create_parameter( | |
# shape=[1, num_patches, embed_dim[0]], default_initializer=zeros_) | |
# self.add_parameter("pos_embed", self.pos_embed) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
Block_unit = eval(block_unit) | |
dpr = np.linspace(0, drop_path_rate, sum(depth)) | |
self.blocks1 = nn.ModuleList( | |
[ | |
Block_unit( | |
dim=embed_dim[0], | |
num_heads=num_heads[0], | |
mixer=mixer[0 : depth[0]][i], | |
HW=self.HW, | |
local_mixer=local_mixer[0], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[0 : depth[0]][i], | |
norm_layer=norm_layer, | |
epsilon=epsilon, | |
prenorm=prenorm, | |
) | |
for i in range(depth[0]) | |
] | |
) | |
if patch_merging is not None: | |
self.sub_sample1 = SubSample( | |
embed_dim[0], embed_dim[1], sub_norm=sub_norm, stride=[2, 1], types=patch_merging | |
) | |
HW = [self.HW[0] // 2, self.HW[1]] | |
else: | |
HW = self.HW | |
self.patch_merging = patch_merging | |
self.blocks2 = nn.ModuleList( | |
[ | |
Block_unit( | |
dim=embed_dim[1], | |
num_heads=num_heads[1], | |
mixer=mixer[depth[0] : depth[0] + depth[1]][i], | |
HW=HW, | |
local_mixer=local_mixer[1], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[depth[0] : depth[0] + depth[1]][i], | |
norm_layer=norm_layer, | |
epsilon=epsilon, | |
prenorm=prenorm, | |
) | |
for i in range(depth[1]) | |
] | |
) | |
if patch_merging is not None: | |
self.sub_sample2 = SubSample( | |
embed_dim[1], embed_dim[2], sub_norm=sub_norm, stride=[2, 1], types=patch_merging | |
) | |
HW = [self.HW[0] // 4, self.HW[1]] | |
else: | |
HW = self.HW | |
self.blocks3 = nn.ModuleList( | |
[ | |
Block_unit( | |
dim=embed_dim[2], | |
num_heads=num_heads[2], | |
mixer=mixer[depth[0] + depth[1] :][i], | |
HW=HW, | |
local_mixer=local_mixer[2], | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
act_layer=eval(act), | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[depth[0] + depth[1] :][i], | |
norm_layer=norm_layer, | |
epsilon=epsilon, | |
prenorm=prenorm, | |
) | |
for i in range(depth[2]) | |
] | |
) | |
self.last_stage = last_stage | |
if last_stage: | |
self.avg_pool = nn.AdaptiveAvgPool2d((1, out_char_num)) | |
self.last_conv = nn.Conv2d( | |
in_channels=embed_dim[2], | |
out_channels=self.out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=False, | |
) | |
self.hardswish = nn.Hardswish() | |
self.dropout = nn.Dropout(p=last_drop) | |
if not prenorm: | |
self.norm = eval(norm_layer)(embed_dim[-1], epsilon=epsilon) | |
self.use_lenhead = use_lenhead | |
if use_lenhead: | |
self.len_conv = nn.Linear(embed_dim[2], self.out_channels) | |
self.hardswish_len = nn.Hardswish() | |
self.dropout_len = nn.Dropout(p=last_drop) | |
trunc_normal_(self.pos_embed, std=0.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks1: | |
x = blk(x) | |
if self.patch_merging is not None: | |
x = self.sub_sample1(x.permute([0, 2, 1]).reshape([-1, self.embed_dim[0], self.HW[0], self.HW[1]])) | |
for blk in self.blocks2: | |
x = blk(x) | |
if self.patch_merging is not None: | |
x = self.sub_sample2(x.permute([0, 2, 1]).reshape([-1, self.embed_dim[1], self.HW[0] // 2, self.HW[1]])) | |
for blk in self.blocks3: | |
x = blk(x) | |
if not self.prenorm: | |
x = self.norm(x) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
if self.use_lenhead: | |
len_x = self.len_conv(x.mean(1)) | |
len_x = self.dropout_len(self.hardswish_len(len_x)) | |
if self.last_stage: | |
if self.patch_merging is not None: | |
h = self.HW[0] // 4 | |
else: | |
h = self.HW[0] | |
x = self.avg_pool(x.permute([0, 2, 1]).reshape([-1, self.embed_dim[2], h, self.HW[1]])) | |
x = self.last_conv(x) | |
x = self.hardswish(x) | |
x = self.dropout(x) | |
if self.use_lenhead: | |
return x, len_x | |
return x | |
if __name__ == "__main__": | |
a = torch.rand(1, 3, 48, 100) | |
svtr = SVTRNet() | |
out = svtr(a) | |
print(svtr) | |
print(out.size()) | |