Cosmos-Predict2 / diffusers_repo /utils /check_support_list.py
multimodalart's picture
Upload 2025 files
22a452a verified
raw
history blame
4.9 kB
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
"""
Utility that checks that modules like attention processors are listed in the documentation file.
```bash
python utils/check_support_list.py
```
It has no auto-fix mode.
"""
import os
import re
# All paths are set with the intent that you run this script from the root of the repo
REPO_PATH = "."
def read_documented_classes(doc_path, autodoc_regex=r"\[\[autodoc\]\]\s([^\n]+)"):
"""
Reads documented classes from a doc file using a regex to find lines like [[autodoc]] my.module.Class.
Returns a list of documented class names (just the class name portion).
"""
with open(os.path.join(REPO_PATH, doc_path), "r") as f:
doctext = f.read()
matches = re.findall(autodoc_regex, doctext)
return [match.split(".")[-1] for match in matches]
def read_source_classes(src_path, class_regex, exclude_conditions=None):
"""
Reads class names from a source file using a regex that captures class definitions.
Optionally exclude classes based on a list of conditions (functions that take class name and return bool).
"""
if exclude_conditions is None:
exclude_conditions = []
with open(os.path.join(REPO_PATH, src_path), "r") as f:
doctext = f.read()
classes = re.findall(class_regex, doctext)
# Filter out classes that meet any of the exclude conditions
filtered_classes = [c for c in classes if not any(cond(c) for cond in exclude_conditions)]
return filtered_classes
def check_documentation(doc_path, src_path, doc_regex, src_regex, exclude_conditions=None):
"""
Generic function to check if all classes defined in `src_path` are documented in `doc_path`.
Returns a set of undocumented class names.
"""
documented = set(read_documented_classes(doc_path, doc_regex))
source_classes = set(read_source_classes(src_path, src_regex, exclude_conditions=exclude_conditions))
# Find which classes in source are not documented in a deterministic way.
undocumented = sorted(source_classes - documented)
return undocumented
if __name__ == "__main__":
# Define the checks we need to perform
checks = {
"Attention Processors": {
"doc_path": "docs/source/en/api/attnprocessor.md",
"src_path": "src/diffusers/models/attention_processor.py",
"doc_regex": r"\[\[autodoc\]\]\s([^\n]+)",
"src_regex": r"class\s+(\w+Processor(?:\d*_?\d*))[:(]",
"exclude_conditions": [lambda c: "LoRA" in c, lambda c: c == "Attention"],
},
"Image Processors": {
"doc_path": "docs/source/en/api/image_processor.md",
"src_path": "src/diffusers/image_processor.py",
"doc_regex": r"\[\[autodoc\]\]\s([^\n]+)",
"src_regex": r"class\s+(\w+Processor(?:\d*_?\d*))[:(]",
},
"Activations": {
"doc_path": "docs/source/en/api/activations.md",
"src_path": "src/diffusers/models/activations.py",
"doc_regex": r"\[\[autodoc\]\]\s([^\n]+)",
"src_regex": r"class\s+(\w+)\s*\(.*?nn\.Module.*?\):",
},
"Normalizations": {
"doc_path": "docs/source/en/api/normalization.md",
"src_path": "src/diffusers/models/normalization.py",
"doc_regex": r"\[\[autodoc\]\]\s([^\n]+)",
"src_regex": r"class\s+(\w+)\s*\(.*?nn\.Module.*?\):",
"exclude_conditions": [
# Exclude LayerNorm as it's an intentional exception
lambda c: c == "LayerNorm"
],
},
"LoRA Mixins": {
"doc_path": "docs/source/en/api/loaders/lora.md",
"src_path": "src/diffusers/loaders/lora_pipeline.py",
"doc_regex": r"\[\[autodoc\]\]\s([^\n]+)",
"src_regex": r"class\s+(\w+LoraLoaderMixin(?:\d*_?\d*))[:(]",
},
}
missing_items = {}
for category, params in checks.items():
undocumented = check_documentation(
doc_path=params["doc_path"],
src_path=params["src_path"],
doc_regex=params["doc_regex"],
src_regex=params["src_regex"],
exclude_conditions=params.get("exclude_conditions"),
)
if undocumented:
missing_items[category] = undocumented
# If we have any missing items, raise a single combined error
if missing_items:
error_msg = ["Some classes are not documented properly:\n"]
for category, classes in missing_items.items():
error_msg.append(f"- {category}: {', '.join(sorted(classes))}")
raise ValueError("\n".join(error_msg))