Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import pathlib | |
from typing import Any, Dict | |
import torch | |
from accelerate import init_empty_weights | |
from huggingface_hub import snapshot_download | |
from transformers import T5EncoderModel, T5TokenizerFast | |
from diffusers import ( | |
AutoencoderKLCosmos, | |
AutoencoderKLWan, | |
CosmosTextToImagePipeline, | |
CosmosTextToWorldPipeline, | |
CosmosTransformer3DModel, | |
EDMEulerScheduler, | |
) | |
def remove_keys_(key: str, state_dict: Dict[str, Any]): | |
state_dict.pop(key) | |
def update_state_dict_(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]: | |
state_dict[new_key] = state_dict.pop(old_key) | |
def rename_transformer_blocks_(key: str, state_dict: Dict[str, Any]): | |
block_index = int(key.split(".")[1].removeprefix("block")) | |
new_key = key | |
old_prefix = f"blocks.block{block_index}" | |
new_prefix = f"transformer_blocks.{block_index}" | |
new_key = new_prefix + new_key.removeprefix(old_prefix) | |
state_dict[new_key] = state_dict.pop(key) | |
TRANSFORMER_KEYS_RENAME_DICT_COSMOS_1_0 = { | |
"t_embedder.1": "time_embed.t_embedder", | |
"affline_norm": "time_embed.norm", | |
".blocks.0.block.attn": ".attn1", | |
".blocks.1.block.attn": ".attn2", | |
".blocks.2.block": ".ff", | |
".blocks.0.adaLN_modulation.1": ".norm1.linear_1", | |
".blocks.0.adaLN_modulation.2": ".norm1.linear_2", | |
".blocks.1.adaLN_modulation.1": ".norm2.linear_1", | |
".blocks.1.adaLN_modulation.2": ".norm2.linear_2", | |
".blocks.2.adaLN_modulation.1": ".norm3.linear_1", | |
".blocks.2.adaLN_modulation.2": ".norm3.linear_2", | |
"to_q.0": "to_q", | |
"to_q.1": "norm_q", | |
"to_k.0": "to_k", | |
"to_k.1": "norm_k", | |
"to_v.0": "to_v", | |
"layer1": "net.0.proj", | |
"layer2": "net.2", | |
"proj.1": "proj", | |
"x_embedder": "patch_embed", | |
"extra_pos_embedder": "learnable_pos_embed", | |
"final_layer.adaLN_modulation.1": "norm_out.linear_1", | |
"final_layer.adaLN_modulation.2": "norm_out.linear_2", | |
"final_layer.linear": "proj_out", | |
} | |
TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_1_0 = { | |
"blocks.block": rename_transformer_blocks_, | |
"logvar.0.freqs": remove_keys_, | |
"logvar.0.phases": remove_keys_, | |
"logvar.1.weight": remove_keys_, | |
"pos_embedder.seq": remove_keys_, | |
} | |
TRANSFORMER_KEYS_RENAME_DICT_COSMOS_2_0 = { | |
"t_embedder.1": "time_embed.t_embedder", | |
"t_embedding_norm": "time_embed.norm", | |
"blocks": "transformer_blocks", | |
"adaln_modulation_self_attn.1": "norm1.linear_1", | |
"adaln_modulation_self_attn.2": "norm1.linear_2", | |
"adaln_modulation_cross_attn.1": "norm2.linear_1", | |
"adaln_modulation_cross_attn.2": "norm2.linear_2", | |
"adaln_modulation_mlp.1": "norm3.linear_1", | |
"adaln_modulation_mlp.2": "norm3.linear_2", | |
"self_attn": "attn1", | |
"cross_attn": "attn2", | |
"q_proj": "to_q", | |
"k_proj": "to_k", | |
"v_proj": "to_v", | |
"output_proj": "to_out.0", | |
"q_norm": "norm_q", | |
"k_norm": "norm_k", | |
"mlp.layer1": "ff.net.0.proj", | |
"mlp.layer2": "ff.net.2", | |
"x_embedder.proj.1": "patch_embed.proj", | |
# "extra_pos_embedder": "learnable_pos_embed", | |
"final_layer.adaln_modulation.1": "norm_out.linear_1", | |
"final_layer.adaln_modulation.2": "norm_out.linear_2", | |
"final_layer.linear": "proj_out", | |
} | |
TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_2_0 = { | |
"accum_video_sample_counter": remove_keys_, | |
"accum_image_sample_counter": remove_keys_, | |
"accum_iteration": remove_keys_, | |
"accum_train_in_hours": remove_keys_, | |
"pos_embedder.seq": remove_keys_, | |
"pos_embedder.dim_spatial_range": remove_keys_, | |
"pos_embedder.dim_temporal_range": remove_keys_, | |
"_extra_state": remove_keys_, | |
} | |
TRANSFORMER_CONFIGS = { | |
"Cosmos-1.0-Diffusion-7B-Text2World": { | |
"in_channels": 16, | |
"out_channels": 16, | |
"num_attention_heads": 32, | |
"attention_head_dim": 128, | |
"num_layers": 28, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (2.0, 1.0, 1.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": "learnable", | |
}, | |
"Cosmos-1.0-Diffusion-7B-Video2World": { | |
"in_channels": 16 + 1, | |
"out_channels": 16, | |
"num_attention_heads": 32, | |
"attention_head_dim": 128, | |
"num_layers": 28, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (2.0, 1.0, 1.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": "learnable", | |
}, | |
"Cosmos-1.0-Diffusion-14B-Text2World": { | |
"in_channels": 16, | |
"out_channels": 16, | |
"num_attention_heads": 40, | |
"attention_head_dim": 128, | |
"num_layers": 36, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (2.0, 2.0, 2.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": "learnable", | |
}, | |
"Cosmos-1.0-Diffusion-14B-Video2World": { | |
"in_channels": 16 + 1, | |
"out_channels": 16, | |
"num_attention_heads": 40, | |
"attention_head_dim": 128, | |
"num_layers": 36, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (2.0, 2.0, 2.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": "learnable", | |
}, | |
"Cosmos-2.0-Diffusion-2B-Text2Image": { | |
"in_channels": 16, | |
"out_channels": 16, | |
"num_attention_heads": 16, | |
"attention_head_dim": 128, | |
"num_layers": 28, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (1.0, 4.0, 4.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": None, | |
}, | |
"Cosmos-2.0-Diffusion-14B-Text2Image": { | |
"in_channels": 16, | |
"out_channels": 16, | |
"num_attention_heads": 40, | |
"attention_head_dim": 128, | |
"num_layers": 36, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (1.0, 4.0, 4.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": None, | |
}, | |
"Cosmos-2.0-Diffusion-2B-Video2World": { | |
"in_channels": 16 + 1, | |
"out_channels": 16, | |
"num_attention_heads": 16, | |
"attention_head_dim": 128, | |
"num_layers": 28, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (1.0, 3.0, 3.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": None, | |
}, | |
"Cosmos-2.0-Diffusion-14B-Video2World": { | |
"in_channels": 16 + 1, | |
"out_channels": 16, | |
"num_attention_heads": 40, | |
"attention_head_dim": 128, | |
"num_layers": 36, | |
"mlp_ratio": 4.0, | |
"text_embed_dim": 1024, | |
"adaln_lora_dim": 256, | |
"max_size": (128, 240, 240), | |
"patch_size": (1, 2, 2), | |
"rope_scale": (20 / 24, 2.0, 2.0), | |
"concat_padding_mask": True, | |
"extra_pos_embed_type": None, | |
}, | |
} | |
VAE_KEYS_RENAME_DICT = { | |
"down.0": "down_blocks.0", | |
"down.1": "down_blocks.1", | |
"down.2": "down_blocks.2", | |
"up.0": "up_blocks.2", | |
"up.1": "up_blocks.1", | |
"up.2": "up_blocks.0", | |
".block.": ".resnets.", | |
"downsample": "downsamplers.0", | |
"upsample": "upsamplers.0", | |
"mid.block_1": "mid_block.resnets.0", | |
"mid.attn_1.0": "mid_block.attentions.0", | |
"mid.attn_1.1": "mid_block.temp_attentions.0", | |
"mid.block_2": "mid_block.resnets.1", | |
".q.conv3d": ".to_q", | |
".k.conv3d": ".to_k", | |
".v.conv3d": ".to_v", | |
".proj_out.conv3d": ".to_out.0", | |
".0.conv3d": ".conv_s", | |
".1.conv3d": ".conv_t", | |
"conv1.conv3d": "conv1", | |
"conv2.conv3d": "conv2", | |
"conv3.conv3d": "conv3", | |
"nin_shortcut.conv3d": "conv_shortcut", | |
"quant_conv.conv3d": "quant_conv", | |
"post_quant_conv.conv3d": "post_quant_conv", | |
} | |
VAE_SPECIAL_KEYS_REMAP = { | |
"wavelets": remove_keys_, | |
"_arange": remove_keys_, | |
"patch_size_buffer": remove_keys_, | |
} | |
VAE_CONFIGS = { | |
"CV8x8x8-0.1": { | |
"name": "nvidia/Cosmos-0.1-Tokenizer-CV8x8x8", | |
"diffusers_config": { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 16, | |
"encoder_block_out_channels": (128, 256, 512, 512), | |
"decode_block_out_channels": (256, 512, 512, 512), | |
"attention_resolutions": (32,), | |
"resolution": 1024, | |
"num_layers": 2, | |
"patch_size": 4, | |
"patch_type": "haar", | |
"scaling_factor": 1.0, | |
"spatial_compression_ratio": 8, | |
"temporal_compression_ratio": 8, | |
"latents_mean": None, | |
"latents_std": None, | |
}, | |
}, | |
"CV8x8x8-1.0": { | |
"name": "nvidia/Cosmos-1.0-Tokenizer-CV8x8x8", | |
"diffusers_config": { | |
"in_channels": 3, | |
"out_channels": 3, | |
"latent_channels": 16, | |
"encoder_block_out_channels": (128, 256, 512, 512), | |
"decode_block_out_channels": (256, 512, 512, 512), | |
"attention_resolutions": (32,), | |
"resolution": 1024, | |
"num_layers": 2, | |
"patch_size": 4, | |
"patch_type": "haar", | |
"scaling_factor": 1.0, | |
"spatial_compression_ratio": 8, | |
"temporal_compression_ratio": 8, | |
"latents_mean": None, | |
"latents_std": None, | |
}, | |
}, | |
} | |
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]: | |
state_dict = saved_dict | |
if "model" in saved_dict.keys(): | |
state_dict = state_dict["model"] | |
if "module" in saved_dict.keys(): | |
state_dict = state_dict["module"] | |
if "state_dict" in saved_dict.keys(): | |
state_dict = state_dict["state_dict"] | |
return state_dict | |
def convert_transformer(transformer_type: str, ckpt_path: str, weights_only: bool = True): | |
PREFIX_KEY = "net." | |
original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", weights_only=weights_only)) | |
if "Cosmos-1.0" in transformer_type: | |
TRANSFORMER_KEYS_RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT_COSMOS_1_0 | |
TRANSFORMER_SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_1_0 | |
elif "Cosmos-2.0" in transformer_type: | |
TRANSFORMER_KEYS_RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT_COSMOS_2_0 | |
TRANSFORMER_SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP_COSMOS_2_0 | |
else: | |
assert False | |
with init_empty_weights(): | |
config = TRANSFORMER_CONFIGS[transformer_type] | |
transformer = CosmosTransformer3DModel(**config) | |
for key in list(original_state_dict.keys()): | |
new_key = key[:] | |
if new_key.startswith(PREFIX_KEY): | |
new_key = new_key.removeprefix(PREFIX_KEY) | |
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items(): | |
new_key = new_key.replace(replace_key, rename_key) | |
update_state_dict_(original_state_dict, key, new_key) | |
for key in list(original_state_dict.keys()): | |
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items(): | |
if special_key not in key: | |
continue | |
handler_fn_inplace(key, original_state_dict) | |
transformer.load_state_dict(original_state_dict, strict=True, assign=True) | |
return transformer | |
def convert_vae(vae_type: str): | |
model_name = VAE_CONFIGS[vae_type]["name"] | |
snapshot_directory = snapshot_download(model_name, repo_type="model") | |
directory = pathlib.Path(snapshot_directory) | |
autoencoder_file = directory / "autoencoder.jit" | |
mean_std_file = directory / "mean_std.pt" | |
original_state_dict = torch.jit.load(autoencoder_file.as_posix()).state_dict() | |
if mean_std_file.exists(): | |
mean_std = torch.load(mean_std_file, map_location="cpu", weights_only=True) | |
else: | |
mean_std = (None, None) | |
config = VAE_CONFIGS[vae_type]["diffusers_config"] | |
config.update( | |
{ | |
"latents_mean": mean_std[0].detach().cpu().numpy().tolist(), | |
"latents_std": mean_std[1].detach().cpu().numpy().tolist(), | |
} | |
) | |
vae = AutoencoderKLCosmos(**config) | |
for key in list(original_state_dict.keys()): | |
new_key = key[:] | |
for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items(): | |
new_key = new_key.replace(replace_key, rename_key) | |
update_state_dict_(original_state_dict, key, new_key) | |
for key in list(original_state_dict.keys()): | |
for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items(): | |
if special_key not in key: | |
continue | |
handler_fn_inplace(key, original_state_dict) | |
vae.load_state_dict(original_state_dict, strict=True, assign=True) | |
return vae | |
def save_pipeline_cosmos_1_0(args, transformer, vae): | |
text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_path, torch_dtype=torch.bfloat16) | |
tokenizer = T5TokenizerFast.from_pretrained(args.tokenizer_path) | |
# The original code initializes EDM config with sigma_min=0.0002, but does not make use of it anywhere directly. | |
# So, the sigma_min values that is used is the default value of 0.002. | |
scheduler = EDMEulerScheduler( | |
sigma_min=0.002, | |
sigma_max=80, | |
sigma_data=0.5, | |
sigma_schedule="karras", | |
num_train_timesteps=1000, | |
prediction_type="epsilon", | |
rho=7.0, | |
final_sigmas_type="sigma_min", | |
) | |
pipe = CosmosTextToWorldPipeline( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
transformer=transformer, | |
vae=vae, | |
scheduler=scheduler, | |
) | |
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB") | |
def save_pipeline_cosmos_2_0(args, transformer, vae): | |
text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_path, torch_dtype=torch.bfloat16) | |
tokenizer = T5TokenizerFast.from_pretrained(args.tokenizer_path) | |
scheduler = EDMEulerScheduler( | |
sigma_min=0.002, | |
sigma_max=80, | |
sigma_data=1.0, | |
sigma_schedule="karras", | |
num_train_timesteps=1000, | |
prediction_type="epsilon", | |
rho=7.0, | |
final_sigmas_type="sigma_min", | |
use_flow_sigmas=True, | |
) | |
pipe = CosmosTextToImagePipeline( | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
transformer=transformer, | |
vae=vae, | |
scheduler=scheduler, | |
) | |
pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB") | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--transformer_type", type=str, default=None, choices=list(TRANSFORMER_CONFIGS.keys())) | |
parser.add_argument( | |
"--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint" | |
) | |
parser.add_argument( | |
"--vae_type", type=str, default=None, choices=["none", *list(VAE_CONFIGS.keys())], help="Type of VAE" | |
) | |
parser.add_argument("--text_encoder_path", type=str, default="google-t5/t5-11b") | |
parser.add_argument("--tokenizer_path", type=str, default="google-t5/t5-11b") | |
parser.add_argument("--save_pipeline", action="store_true") | |
parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved") | |
parser.add_argument("--dtype", default="bf16", help="Torch dtype to save the transformer in.") | |
return parser.parse_args() | |
DTYPE_MAPPING = { | |
"fp32": torch.float32, | |
"fp16": torch.float16, | |
"bf16": torch.bfloat16, | |
} | |
if __name__ == "__main__": | |
args = get_args() | |
transformer = None | |
dtype = DTYPE_MAPPING[args.dtype] | |
if args.save_pipeline: | |
assert args.transformer_ckpt_path is not None | |
assert args.vae_type is not None | |
assert args.text_encoder_path is not None | |
assert args.tokenizer_path is not None | |
if args.transformer_ckpt_path is not None: | |
weights_only = "Cosmos-1.0" in args.transformer_type | |
transformer = convert_transformer(args.transformer_type, args.transformer_ckpt_path, weights_only) | |
transformer = transformer.to(dtype=dtype) | |
if not args.save_pipeline: | |
transformer.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB") | |
if args.vae_type is not None: | |
if "Cosmos-1.0" in args.transformer_type: | |
vae = convert_vae(args.vae_type) | |
else: | |
vae = AutoencoderKLWan.from_pretrained( | |
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32 | |
) | |
if not args.save_pipeline: | |
vae.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB") | |
if args.save_pipeline: | |
if "Cosmos-1.0" in args.transformer_type: | |
save_pipeline_cosmos_1_0(args, transformer, vae) | |
elif "Cosmos-2.0" in args.transformer_type: | |
save_pipeline_cosmos_2_0(args, transformer, vae) | |
else: | |
assert False | |