# Copyright 2025 Lightricks and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class ResBlock(torch.nn.Module): def __init__(self, channels: int, mid_channels: Optional[int] = None, dims: int = 3): super().__init__() if mid_channels is None: mid_channels = channels Conv = torch.nn.Conv2d if dims == 2 else torch.nn.Conv3d self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1) self.norm1 = torch.nn.GroupNorm(32, mid_channels) self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1) self.norm2 = torch.nn.GroupNorm(32, channels) self.activation = torch.nn.SiLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.conv1(hidden_states) hidden_states = self.norm1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = self.activation(hidden_states + residual) return hidden_states class PixelShuffleND(torch.nn.Module): def __init__(self, dims, upscale_factors=(2, 2, 2)): super().__init__() self.dims = dims self.upscale_factors = upscale_factors if dims not in [1, 2, 3]: raise ValueError("dims must be 1, 2, or 3") def forward(self, x): if self.dims == 3: # spatiotemporal: b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3) return ( x.unflatten(1, (-1, *self.upscale_factors[:3])) .permute(0, 1, 5, 2, 6, 3, 7, 4) .flatten(6, 7) .flatten(4, 5) .flatten(2, 3) ) elif self.dims == 2: # spatial: b (c p1 p2) h w -> b c (h p1) (w p2) return ( x.unflatten(1, (-1, *self.upscale_factors[:2])).permute(0, 1, 4, 2, 5, 3).flatten(4, 5).flatten(2, 3) ) elif self.dims == 1: # temporal: b (c p1) f h w -> b c (f p1) h w return x.unflatten(1, (-1, *self.upscale_factors[:1])).permute(0, 1, 3, 2, 4, 5).flatten(2, 3) class LTXLatentUpsamplerModel(ModelMixin, ConfigMixin): """ Model to spatially upsample VAE latents. Args: in_channels (`int`, defaults to `128`): Number of channels in the input latent mid_channels (`int`, defaults to `512`): Number of channels in the middle layers num_blocks_per_stage (`int`, defaults to `4`): Number of ResBlocks to use in each stage (pre/post upsampling) dims (`int`, defaults to `3`): Number of dimensions for convolutions (2 or 3) spatial_upsample (`bool`, defaults to `True`): Whether to spatially upsample the latent temporal_upsample (`bool`, defaults to `False`): Whether to temporally upsample the latent """ @register_to_config def __init__( self, in_channels: int = 128, mid_channels: int = 512, num_blocks_per_stage: int = 4, dims: int = 3, spatial_upsample: bool = True, temporal_upsample: bool = False, ): super().__init__() self.in_channels = in_channels self.mid_channels = mid_channels self.num_blocks_per_stage = num_blocks_per_stage self.dims = dims self.spatial_upsample = spatial_upsample self.temporal_upsample = temporal_upsample ConvNd = torch.nn.Conv2d if dims == 2 else torch.nn.Conv3d self.initial_conv = ConvNd(in_channels, mid_channels, kernel_size=3, padding=1) self.initial_norm = torch.nn.GroupNorm(32, mid_channels) self.initial_activation = torch.nn.SiLU() self.res_blocks = torch.nn.ModuleList([ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]) if spatial_upsample and temporal_upsample: self.upsampler = torch.nn.Sequential( torch.nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1), PixelShuffleND(3), ) elif spatial_upsample: self.upsampler = torch.nn.Sequential( torch.nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1), PixelShuffleND(2), ) elif temporal_upsample: self.upsampler = torch.nn.Sequential( torch.nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1), PixelShuffleND(1), ) else: raise ValueError("Either spatial_upsample or temporal_upsample must be True") self.post_upsample_res_blocks = torch.nn.ModuleList( [ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)] ) self.final_conv = ConvNd(mid_channels, in_channels, kernel_size=3, padding=1) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = hidden_states.shape if self.dims == 2: hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) hidden_states = self.initial_conv(hidden_states) hidden_states = self.initial_norm(hidden_states) hidden_states = self.initial_activation(hidden_states) for block in self.res_blocks: hidden_states = block(hidden_states) hidden_states = self.upsampler(hidden_states) for block in self.post_upsample_res_blocks: hidden_states = block(hidden_states) hidden_states = self.final_conv(hidden_states) hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) else: hidden_states = self.initial_conv(hidden_states) hidden_states = self.initial_norm(hidden_states) hidden_states = self.initial_activation(hidden_states) for block in self.res_blocks: hidden_states = block(hidden_states) if self.temporal_upsample: hidden_states = self.upsampler(hidden_states) hidden_states = hidden_states[:, :, 1:, :, :] else: hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) hidden_states = self.upsampler(hidden_states) hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) for block in self.post_upsample_res_blocks: hidden_states = block(hidden_states) hidden_states = self.final_conv(hidden_states) return hidden_states