# Copyright 2025 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import AutoencoderKLLTXVideo, LTXLatentUpsamplePipeline from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel from diffusers.utils.testing_utils import enable_full_determinism from ..test_pipelines_common import PipelineTesterMixin, to_np enable_full_determinism() class LTXLatentUpsamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = LTXLatentUpsamplePipeline params = {"video", "generator"} batch_params = {"video", "generator"} required_optional_params = frozenset(["generator", "latents", "return_dict"]) test_xformers_attention = False supports_dduf = False def get_dummy_components(self): torch.manual_seed(0) vae = AutoencoderKLLTXVideo( in_channels=3, out_channels=3, latent_channels=8, block_out_channels=(8, 8, 8, 8), decoder_block_out_channels=(8, 8, 8, 8), layers_per_block=(1, 1, 1, 1, 1), decoder_layers_per_block=(1, 1, 1, 1, 1), spatio_temporal_scaling=(True, True, False, False), decoder_spatio_temporal_scaling=(True, True, False, False), decoder_inject_noise=(False, False, False, False, False), upsample_residual=(False, False, False, False), upsample_factor=(1, 1, 1, 1), timestep_conditioning=False, patch_size=1, patch_size_t=1, encoder_causal=True, decoder_causal=False, ) vae.use_framewise_encoding = False vae.use_framewise_decoding = False torch.manual_seed(0) latent_upsampler = LTXLatentUpsamplerModel( in_channels=8, mid_channels=32, num_blocks_per_stage=1, dims=3, spatial_upsample=True, temporal_upsample=False, ) components = { "vae": vae, "latent_upsampler": latent_upsampler, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) video = torch.randn((5, 3, 32, 32), generator=generator, device=device) inputs = { "video": video, "generator": generator, "height": 16, "width": 16, "output_type": "pt", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) video = pipe(**inputs).frames generated_video = video[0] self.assertEqual(generated_video.shape, (5, 3, 32, 32)) expected_video = torch.randn(5, 3, 32, 32) max_diff = np.abs(generated_video - expected_video).max() self.assertLessEqual(max_diff, 1e10) def test_vae_tiling(self, expected_diff_max: float = 0.25): generator_device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to("cpu") pipe.set_progress_bar_config(disable=None) # Without tiling inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_without_tiling = pipe(**inputs)[0] # With tiling pipe.vae.enable_tiling( tile_sample_min_height=96, tile_sample_min_width=96, tile_sample_stride_height=64, tile_sample_stride_width=64, ) inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_with_tiling = pipe(**inputs)[0] self.assertLess( (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), expected_diff_max, "VAE tiling should not affect the inference results", ) @unittest.skip("Test is not applicable.") def test_callback_inputs(self): pass @unittest.skip("Test is not applicable.") def test_attention_slicing_forward_pass( self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 ): pass @unittest.skip("Test is not applicable.") def test_inference_batch_consistent(self): pass @unittest.skip("Test is not applicable.") def test_inference_batch_single_identical(self): pass