import io import random import struct import tempfile from contextlib import contextmanager from typing import List, Optional, Union import numpy as np import PIL.Image import PIL.ImageOps from .import_utils import BACKENDS_MAPPING, is_imageio_available, is_opencv_available from .logging import get_logger global_rng = random.Random() logger = get_logger(__name__) @contextmanager def buffered_writer(raw_f): f = io.BufferedWriter(raw_f) yield f f.flush() def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None, fps: int = 10) -> str: if output_gif_path is None: output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name image[0].save( output_gif_path, save_all=True, append_images=image[1:], optimize=False, duration=1000 // fps, loop=0, ) return output_gif_path def export_to_ply(mesh, output_ply_path: str = None): """ Write a PLY file for a mesh. """ if output_ply_path is None: output_ply_path = tempfile.NamedTemporaryFile(suffix=".ply").name coords = mesh.verts.detach().cpu().numpy() faces = mesh.faces.cpu().numpy() rgb = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1) with buffered_writer(open(output_ply_path, "wb")) as f: f.write(b"ply\n") f.write(b"format binary_little_endian 1.0\n") f.write(bytes(f"element vertex {len(coords)}\n", "ascii")) f.write(b"property float x\n") f.write(b"property float y\n") f.write(b"property float z\n") if rgb is not None: f.write(b"property uchar red\n") f.write(b"property uchar green\n") f.write(b"property uchar blue\n") if faces is not None: f.write(bytes(f"element face {len(faces)}\n", "ascii")) f.write(b"property list uchar int vertex_index\n") f.write(b"end_header\n") if rgb is not None: rgb = (rgb * 255.499).round().astype(int) vertices = [ (*coord, *rgb) for coord, rgb in zip( coords.tolist(), rgb.tolist(), ) ] format = struct.Struct("<3f3B") for item in vertices: f.write(format.pack(*item)) else: format = struct.Struct("<3f") for vertex in coords.tolist(): f.write(format.pack(*vertex)) if faces is not None: format = struct.Struct(" str: """ quality: Video output quality. Default is 5. Uses variable bit rate. Highest quality is 10, lowest is 0. Set to None to prevent variable bitrate flags to FFMPEG so you can manually specify them using output_params instead. Specifying a fixed bitrate using `bitrate` disables this parameter. bitrate: Set a constant bitrate for the video encoding. Default is None causing `quality` parameter to be used instead. Better quality videos with smaller file sizes will result from using the `quality` variable bitrate parameter rather than specifying a fixed bitrate with this parameter. macro_block_size: Size constraint for video. Width and height, must be divisible by this number. If not divisible by this number imageio will tell ffmpeg to scale the image up to the next closest size divisible by this number. Most codecs are compatible with a macroblock size of 16 (default), some can go smaller (4, 8). To disable this automatic feature set it to None or 1, however be warned many players can't decode videos that are odd in size and some codecs will produce poor results or fail. See https://en.wikipedia.org/wiki/Macroblock. """ # TODO: Dhruv. Remove by Diffusers release 0.33.0 # Added to prevent breaking existing code if not is_imageio_available(): logger.warning( ( "It is recommended to use `export_to_video` with `imageio` and `imageio-ffmpeg` as a backend. \n" "These libraries are not present in your environment. Attempting to use legacy OpenCV backend to export video. \n" "Support for the OpenCV backend will be deprecated in a future Diffusers version" ) ) return _legacy_export_to_video(video_frames, output_video_path, fps) if is_imageio_available(): import imageio else: raise ImportError(BACKENDS_MAPPING["imageio"][1].format("export_to_video")) try: imageio.plugins.ffmpeg.get_exe() except AttributeError: raise AttributeError( ( "Found an existing imageio backend in your environment. Attempting to export video with imageio. \n" "Unable to find a compatible ffmpeg installation in your environment to use with imageio. Please install via `pip install imageio-ffmpeg" ) ) if output_video_path is None: output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name if isinstance(video_frames[0], np.ndarray): video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames] elif isinstance(video_frames[0], PIL.Image.Image): video_frames = [np.array(frame) for frame in video_frames] with imageio.get_writer( output_video_path, fps=fps, quality=quality, bitrate=bitrate, macro_block_size=macro_block_size ) as writer: for frame in video_frames: writer.append_data(frame) return output_video_path