# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from dataclasses import dataclass from typing import Any, Callable, Optional, Tuple, Union import torch from ..models.attention_processor import Attention, MochiAttention from ..utils import logging from .hooks import HookRegistry, ModelHook logger = logging.get_logger(__name__) # pylint: disable=invalid-name _PYRAMID_ATTENTION_BROADCAST_HOOK = "pyramid_attention_broadcast" _ATTENTION_CLASSES = (Attention, MochiAttention) _SPATIAL_ATTENTION_BLOCK_IDENTIFIERS = ("blocks", "transformer_blocks", "single_transformer_blocks") _TEMPORAL_ATTENTION_BLOCK_IDENTIFIERS = ("temporal_transformer_blocks",) _CROSS_ATTENTION_BLOCK_IDENTIFIERS = ("blocks", "transformer_blocks") @dataclass class PyramidAttentionBroadcastConfig: r""" Configuration for Pyramid Attention Broadcast. Args: spatial_attention_block_skip_range (`int`, *optional*, defaults to `None`): The number of times a specific spatial attention broadcast is skipped before computing the attention states to re-use. If this is set to the value `N`, the attention computation will be skipped `N - 1` times (i.e., old attention states will be re-used) before computing the new attention states again. temporal_attention_block_skip_range (`int`, *optional*, defaults to `None`): The number of times a specific temporal attention broadcast is skipped before computing the attention states to re-use. If this is set to the value `N`, the attention computation will be skipped `N - 1` times (i.e., old attention states will be re-used) before computing the new attention states again. cross_attention_block_skip_range (`int`, *optional*, defaults to `None`): The number of times a specific cross-attention broadcast is skipped before computing the attention states to re-use. If this is set to the value `N`, the attention computation will be skipped `N - 1` times (i.e., old attention states will be re-used) before computing the new attention states again. spatial_attention_timestep_skip_range (`Tuple[int, int]`, defaults to `(100, 800)`): The range of timesteps to skip in the spatial attention layer. The attention computations will be conditionally skipped if the current timestep is within the specified range. temporal_attention_timestep_skip_range (`Tuple[int, int]`, defaults to `(100, 800)`): The range of timesteps to skip in the temporal attention layer. The attention computations will be conditionally skipped if the current timestep is within the specified range. cross_attention_timestep_skip_range (`Tuple[int, int]`, defaults to `(100, 800)`): The range of timesteps to skip in the cross-attention layer. The attention computations will be conditionally skipped if the current timestep is within the specified range. spatial_attention_block_identifiers (`Tuple[str, ...]`, defaults to `("blocks", "transformer_blocks")`): The identifiers to match against the layer names to determine if the layer is a spatial attention layer. temporal_attention_block_identifiers (`Tuple[str, ...]`, defaults to `("temporal_transformer_blocks",)`): The identifiers to match against the layer names to determine if the layer is a temporal attention layer. cross_attention_block_identifiers (`Tuple[str, ...]`, defaults to `("blocks", "transformer_blocks")`): The identifiers to match against the layer names to determine if the layer is a cross-attention layer. """ spatial_attention_block_skip_range: Optional[int] = None temporal_attention_block_skip_range: Optional[int] = None cross_attention_block_skip_range: Optional[int] = None spatial_attention_timestep_skip_range: Tuple[int, int] = (100, 800) temporal_attention_timestep_skip_range: Tuple[int, int] = (100, 800) cross_attention_timestep_skip_range: Tuple[int, int] = (100, 800) spatial_attention_block_identifiers: Tuple[str, ...] = _SPATIAL_ATTENTION_BLOCK_IDENTIFIERS temporal_attention_block_identifiers: Tuple[str, ...] = _TEMPORAL_ATTENTION_BLOCK_IDENTIFIERS cross_attention_block_identifiers: Tuple[str, ...] = _CROSS_ATTENTION_BLOCK_IDENTIFIERS current_timestep_callback: Callable[[], int] = None # TODO(aryan): add PAB for MLP layers (very limited speedup from testing with original codebase # so not added for now) def __repr__(self) -> str: return ( f"PyramidAttentionBroadcastConfig(\n" f" spatial_attention_block_skip_range={self.spatial_attention_block_skip_range},\n" f" temporal_attention_block_skip_range={self.temporal_attention_block_skip_range},\n" f" cross_attention_block_skip_range={self.cross_attention_block_skip_range},\n" f" spatial_attention_timestep_skip_range={self.spatial_attention_timestep_skip_range},\n" f" temporal_attention_timestep_skip_range={self.temporal_attention_timestep_skip_range},\n" f" cross_attention_timestep_skip_range={self.cross_attention_timestep_skip_range},\n" f" spatial_attention_block_identifiers={self.spatial_attention_block_identifiers},\n" f" temporal_attention_block_identifiers={self.temporal_attention_block_identifiers},\n" f" cross_attention_block_identifiers={self.cross_attention_block_identifiers},\n" f" current_timestep_callback={self.current_timestep_callback}\n" ")" ) class PyramidAttentionBroadcastState: r""" State for Pyramid Attention Broadcast. Attributes: iteration (`int`): The current iteration of the Pyramid Attention Broadcast. It is necessary to ensure that `reset_state` is called before starting a new inference forward pass for PAB to work correctly. cache (`Any`): The cached output from the previous forward pass. This is used to re-use the attention states when the attention computation is skipped. It is either a tensor or a tuple of tensors, depending on the module. """ def __init__(self) -> None: self.iteration = 0 self.cache = None def reset(self): self.iteration = 0 self.cache = None def __repr__(self): cache_repr = "" if self.cache is None: cache_repr = "None" else: cache_repr = f"Tensor(shape={self.cache.shape}, dtype={self.cache.dtype})" return f"PyramidAttentionBroadcastState(iteration={self.iteration}, cache={cache_repr})" class PyramidAttentionBroadcastHook(ModelHook): r"""A hook that applies Pyramid Attention Broadcast to a given module.""" _is_stateful = True def __init__( self, timestep_skip_range: Tuple[int, int], block_skip_range: int, current_timestep_callback: Callable[[], int] ) -> None: super().__init__() self.timestep_skip_range = timestep_skip_range self.block_skip_range = block_skip_range self.current_timestep_callback = current_timestep_callback def initialize_hook(self, module): self.state = PyramidAttentionBroadcastState() return module def new_forward(self, module: torch.nn.Module, *args, **kwargs) -> Any: is_within_timestep_range = ( self.timestep_skip_range[0] < self.current_timestep_callback() < self.timestep_skip_range[1] ) should_compute_attention = ( self.state.cache is None or self.state.iteration == 0 or not is_within_timestep_range or self.state.iteration % self.block_skip_range == 0 ) if should_compute_attention: output = self.fn_ref.original_forward(*args, **kwargs) else: output = self.state.cache self.state.cache = output self.state.iteration += 1 return output def reset_state(self, module: torch.nn.Module) -> None: self.state.reset() return module def apply_pyramid_attention_broadcast(module: torch.nn.Module, config: PyramidAttentionBroadcastConfig): r""" Apply [Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) to a given pipeline. PAB is an attention approximation method that leverages the similarity in attention states between timesteps to reduce the computational cost of attention computation. The key takeaway from the paper is that the attention similarity in the cross-attention layers between timesteps is high, followed by less similarity in the temporal and spatial layers. This allows for the skipping of attention computation in the cross-attention layers more frequently than in the temporal and spatial layers. Applying PAB will, therefore, speedup the inference process. Args: module (`torch.nn.Module`): The module to apply Pyramid Attention Broadcast to. config (`Optional[PyramidAttentionBroadcastConfig]`, `optional`, defaults to `None`): The configuration to use for Pyramid Attention Broadcast. Example: ```python >>> import torch >>> from diffusers import CogVideoXPipeline, PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast >>> from diffusers.utils import export_to_video >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> config = PyramidAttentionBroadcastConfig( ... spatial_attention_block_skip_range=2, ... spatial_attention_timestep_skip_range=(100, 800), ... current_timestep_callback=lambda: pipe.current_timestep, ... ) >>> apply_pyramid_attention_broadcast(pipe.transformer, config) ``` """ if config.current_timestep_callback is None: raise ValueError( "The `current_timestep_callback` function must be provided in the configuration to apply Pyramid Attention Broadcast." ) if ( config.spatial_attention_block_skip_range is None and config.temporal_attention_block_skip_range is None and config.cross_attention_block_skip_range is None ): logger.warning( "Pyramid Attention Broadcast requires one or more of `spatial_attention_block_skip_range`, `temporal_attention_block_skip_range` " "or `cross_attention_block_skip_range` parameters to be set to an integer, not `None`. Defaulting to using `spatial_attention_block_skip_range=2`. " "To avoid this warning, please set one of the above parameters." ) config.spatial_attention_block_skip_range = 2 for name, submodule in module.named_modules(): if not isinstance(submodule, _ATTENTION_CLASSES): # PAB has been implemented specific to Diffusers' Attention classes. However, this does not mean that PAB # cannot be applied to this layer. For custom layers, users can extend this functionality and implement # their own PAB logic similar to `_apply_pyramid_attention_broadcast_on_attention_class`. continue _apply_pyramid_attention_broadcast_on_attention_class(name, submodule, config) def _apply_pyramid_attention_broadcast_on_attention_class( name: str, module: Attention, config: PyramidAttentionBroadcastConfig ) -> bool: is_spatial_self_attention = ( any(re.search(identifier, name) is not None for identifier in config.spatial_attention_block_identifiers) and config.spatial_attention_block_skip_range is not None and not getattr(module, "is_cross_attention", False) ) is_temporal_self_attention = ( any(re.search(identifier, name) is not None for identifier in config.temporal_attention_block_identifiers) and config.temporal_attention_block_skip_range is not None and not getattr(module, "is_cross_attention", False) ) is_cross_attention = ( any(re.search(identifier, name) is not None for identifier in config.cross_attention_block_identifiers) and config.cross_attention_block_skip_range is not None and getattr(module, "is_cross_attention", False) ) block_skip_range, timestep_skip_range, block_type = None, None, None if is_spatial_self_attention: block_skip_range = config.spatial_attention_block_skip_range timestep_skip_range = config.spatial_attention_timestep_skip_range block_type = "spatial" elif is_temporal_self_attention: block_skip_range = config.temporal_attention_block_skip_range timestep_skip_range = config.temporal_attention_timestep_skip_range block_type = "temporal" elif is_cross_attention: block_skip_range = config.cross_attention_block_skip_range timestep_skip_range = config.cross_attention_timestep_skip_range block_type = "cross" if block_skip_range is None or timestep_skip_range is None: logger.info( f'Unable to apply Pyramid Attention Broadcast to the selected layer: "{name}" because it does ' f"not match any of the required criteria for spatial, temporal or cross attention layers. Note, " f"however, that this layer may still be valid for applying PAB. Please specify the correct " f"block identifiers in the configuration." ) return False logger.debug(f"Enabling Pyramid Attention Broadcast ({block_type}) in layer: {name}") _apply_pyramid_attention_broadcast_hook( module, timestep_skip_range, block_skip_range, config.current_timestep_callback ) return True def _apply_pyramid_attention_broadcast_hook( module: Union[Attention, MochiAttention], timestep_skip_range: Tuple[int, int], block_skip_range: int, current_timestep_callback: Callable[[], int], ): r""" Apply [Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) to a given torch.nn.Module. Args: module (`torch.nn.Module`): The module to apply Pyramid Attention Broadcast to. timestep_skip_range (`Tuple[int, int]`): The range of timesteps to skip in the attention layer. The attention computations will be conditionally skipped if the current timestep is within the specified range. block_skip_range (`int`): The number of times a specific attention broadcast is skipped before computing the attention states to re-use. If this is set to the value `N`, the attention computation will be skipped `N - 1` times (i.e., old attention states will be re-used) before computing the new attention states again. current_timestep_callback (`Callable[[], int]`): A callback function that returns the current inference timestep. """ registry = HookRegistry.check_if_exists_or_initialize(module) hook = PyramidAttentionBroadcastHook(timestep_skip_range, block_skip_range, current_timestep_callback) registry.register_hook(hook, _PYRAMID_ATTENTION_BROADCAST_HOOK)