# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers from ..attention_processor import AttentionProcessor from ..embeddings import PatchEmbed, PixArtAlphaTextProjection from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormSingle, RMSNorm from ..transformers.sana_transformer import SanaTransformerBlock from .controlnet import zero_module logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class SanaControlNetOutput(BaseOutput): controlnet_block_samples: Tuple[torch.Tensor] class SanaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): _supports_gradient_checkpointing = True _no_split_modules = ["SanaTransformerBlock", "PatchEmbed"] _skip_layerwise_casting_patterns = ["patch_embed", "norm"] @register_to_config def __init__( self, in_channels: int = 32, out_channels: Optional[int] = 32, num_attention_heads: int = 70, attention_head_dim: int = 32, num_layers: int = 7, num_cross_attention_heads: Optional[int] = 20, cross_attention_head_dim: Optional[int] = 112, cross_attention_dim: Optional[int] = 2240, caption_channels: int = 2304, mlp_ratio: float = 2.5, dropout: float = 0.0, attention_bias: bool = False, sample_size: int = 32, patch_size: int = 1, norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, interpolation_scale: Optional[int] = None, ) -> None: super().__init__() out_channels = out_channels or in_channels inner_dim = num_attention_heads * attention_head_dim # 1. Patch Embedding self.patch_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale, pos_embed_type="sincos" if interpolation_scale is not None else None, ) # 2. Additional condition embeddings self.time_embed = AdaLayerNormSingle(inner_dim) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True) # 3. Transformer blocks self.transformer_blocks = nn.ModuleList( [ SanaTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, num_cross_attention_heads=num_cross_attention_heads, cross_attention_head_dim=cross_attention_head_dim, cross_attention_dim=cross_attention_dim, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, mlp_ratio=mlp_ratio, ) for _ in range(num_layers) ] ) # controlnet_blocks self.controlnet_blocks = nn.ModuleList([]) self.input_block = zero_module(nn.Linear(inner_dim, inner_dim)) for _ in range(len(self.transformer_blocks)): controlnet_block = nn.Linear(inner_dim, inner_dim) controlnet_block = zero_module(controlnet_block) self.controlnet_blocks.append(controlnet_block) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, encoder_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size, num_channels, height, width = hidden_states.shape p = self.config.patch_size post_patch_height, post_patch_width = height // p, width // p hidden_states = self.patch_embed(hidden_states) hidden_states = hidden_states + self.input_block(self.patch_embed(controlnet_cond.to(hidden_states.dtype))) timestep, embedded_timestep = self.time_embed( timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) encoder_hidden_states = self.caption_norm(encoder_hidden_states) # 2. Transformer blocks block_res_samples = () if torch.is_grad_enabled() and self.gradient_checkpointing: for block in self.transformer_blocks: hidden_states = self._gradient_checkpointing_func( block, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, ) block_res_samples = block_res_samples + (hidden_states,) else: for block in self.transformer_blocks: hidden_states = block( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, ) block_res_samples = block_res_samples + (hidden_states,) # 3. ControlNet blocks controlnet_block_res_samples = () for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): block_res_sample = controlnet_block(block_res_sample) controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] if not return_dict: return (controlnet_block_res_samples,) return SanaControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)