# Copyright 2023-2025 Marigold Team, ETH Zürich. All rights reserved. # Copyright 2024-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # More information and citation instructions are available on the # Marigold project website: https://marigoldcomputervision.github.io # -------------------------------------------------------------------------- import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, AutoencoderTiny, DDIMScheduler, MarigoldIntrinsicsPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, floats_tensor, load_image, require_torch_accelerator, slow, torch_device, ) from ..test_pipelines_common import PipelineTesterMixin, to_np enable_full_determinism() class MarigoldIntrinsicsPipelineTesterMixin(PipelineTesterMixin): def _test_inference_batch_single_identical( self, batch_size=2, expected_max_diff=1e-4, additional_params_copy_to_batched_inputs=["num_inference_steps"], ): components = self.get_dummy_components() pipe = self.pipeline_class(**components) for components in pipe.components.values(): if hasattr(components, "set_default_attn_processor"): components.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) # Reset generator in case it is has been used in self.get_dummy_inputs inputs["generator"] = self.get_generator(0) logger = diffusers.logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs batched_inputs = {} batched_inputs.update(inputs) for name in self.batch_params: if name not in inputs: continue value = inputs[name] if name == "prompt": len_prompt = len(value) batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] batched_inputs[name][-1] = 100 * "very long" else: batched_inputs[name] = batch_size * [value] if "generator" in inputs: batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] if "batch_size" in inputs: batched_inputs["batch_size"] = batch_size for arg in additional_params_copy_to_batched_inputs: batched_inputs[arg] = inputs[arg] output = pipe(**inputs) output_batch = pipe(**batched_inputs) assert output_batch[0].shape[0] == batch_size * output[0].shape[0] # only changed here max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() assert max_diff < expected_max_diff def _test_inference_batch_consistent( self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True ): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) inputs["generator"] = self.get_generator(0) logger = diffusers.logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # prepare batched inputs batched_inputs = [] for batch_size in batch_sizes: batched_input = {} batched_input.update(inputs) for name in self.batch_params: if name not in inputs: continue value = inputs[name] if name == "prompt": len_prompt = len(value) # make unequal batch sizes batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] # make last batch super long batched_input[name][-1] = 100 * "very long" else: batched_input[name] = batch_size * [value] if batch_generator and "generator" in inputs: batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)] if "batch_size" in inputs: batched_input["batch_size"] = batch_size batched_inputs.append(batched_input) logger.setLevel(level=diffusers.logging.WARNING) for batch_size, batched_input in zip(batch_sizes, batched_inputs): output = pipe(**batched_input) assert len(output[0]) == batch_size * pipe.n_targets # only changed here class MarigoldIntrinsicsPipelineFastTests(MarigoldIntrinsicsPipelineTesterMixin, unittest.TestCase): pipeline_class = MarigoldIntrinsicsPipeline params = frozenset(["image"]) batch_params = frozenset(["image"]) image_params = frozenset(["image"]) image_latents_params = frozenset(["latents"]) callback_cfg_params = frozenset([]) test_xformers_attention = False required_optional_params = frozenset( [ "num_inference_steps", "generator", "output_type", ] ) def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, time_cond_proj_dim=time_cond_proj_dim, sample_size=32, in_channels=12, out_channels=8, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=False, steps_offset=1, beta_schedule="scaled_linear", clip_sample=False, thresholding=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "prediction_type": "intrinsics", } return components def get_dummy_tiny_autoencoder(self): return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "num_inference_steps": 1, "processing_resolution": 0, "generator": generator, "output_type": "np", } return inputs def _test_marigold_intrinsics( self, generator_seed: int = 0, expected_slice: np.ndarray = None, atol: float = 1e-4, **pipe_kwargs, ): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed) pipe_inputs.update(**pipe_kwargs) prediction = pipe(**pipe_inputs).prediction prediction_slice = prediction[0, -3:, -3:, -1].flatten() if pipe_inputs.get("match_input_resolution", True): self.assertEqual(prediction.shape, (2, 32, 32, 3), "Unexpected output resolution") else: self.assertTrue(prediction.shape[0] == 2 and prediction.shape[3] == 3, "Unexpected output dimensions") self.assertEqual( max(prediction.shape[1:3]), pipe_inputs.get("processing_resolution", 768), "Unexpected output resolution", ) np.set_printoptions(precision=5, suppress=True) msg = f"{prediction_slice}" self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol), msg) # self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) def test_marigold_depth_dummy_defaults(self): self._test_marigold_intrinsics( expected_slice=np.array([0.6423, 0.40664, 0.41185, 0.65832, 0.63935, 0.43971, 0.51786, 0.55216, 0.47683]), ) def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self): self._test_marigold_intrinsics( generator_seed=0, expected_slice=np.array([0.6423, 0.40664, 0.41185, 0.65832, 0.63935, 0.43971, 0.51786, 0.55216, 0.47683]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self): self._test_marigold_intrinsics( generator_seed=0, expected_slice=np.array([0.53132, 0.44487, 0.40164, 0.5326, 0.49073, 0.46979, 0.53324, 0.51366, 0.50387]), num_inference_steps=1, processing_resolution=16, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self): self._test_marigold_intrinsics( generator_seed=2024, expected_slice=np.array([0.40257, 0.39468, 0.51373, 0.4161, 0.40162, 0.58535, 0.43581, 0.47834, 0.48951]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self): self._test_marigold_intrinsics( generator_seed=0, expected_slice=np.array([0.49636, 0.4518, 0.42722, 0.59044, 0.6362, 0.39011, 0.53522, 0.55153, 0.48699]), num_inference_steps=2, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self): self._test_marigold_intrinsics( generator_seed=0, expected_slice=np.array([0.55547, 0.43511, 0.4887, 0.56399, 0.63867, 0.56337, 0.47889, 0.52925, 0.49235]), num_inference_steps=1, processing_resolution=64, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self): self._test_marigold_intrinsics( generator_seed=0, expected_slice=np.array([0.57249, 0.49824, 0.54438, 0.57733, 0.52404, 0.5255, 0.56493, 0.56336, 0.48579]), num_inference_steps=1, processing_resolution=32, ensemble_size=3, ensembling_kwargs={"reduction": "mean"}, batch_size=1, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self): self._test_marigold_intrinsics( generator_seed=0, expected_slice=np.array([0.6294, 0.5575, 0.53414, 0.61077, 0.57156, 0.53974, 0.52956, 0.55467, 0.48751]), num_inference_steps=1, processing_resolution=32, ensemble_size=4, ensembling_kwargs={"reduction": "mean"}, batch_size=2, match_input_resolution=True, ) def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self): self._test_marigold_intrinsics( generator_seed=0, expected_slice=np.array([0.63511, 0.68137, 0.48783, 0.46689, 0.58505, 0.36757, 0.58465, 0.54302, 0.50387]), num_inference_steps=1, processing_resolution=16, ensemble_size=1, batch_size=1, match_input_resolution=False, ) def test_marigold_depth_dummy_no_num_inference_steps(self): with self.assertRaises(ValueError) as e: self._test_marigold_intrinsics( num_inference_steps=None, expected_slice=np.array([0.0]), ) self.assertIn("num_inference_steps", str(e)) def test_marigold_depth_dummy_no_processing_resolution(self): with self.assertRaises(ValueError) as e: self._test_marigold_intrinsics( processing_resolution=None, expected_slice=np.array([0.0]), ) self.assertIn("processing_resolution", str(e)) @slow @require_torch_accelerator class MarigoldIntrinsicsPipelineIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def _test_marigold_intrinsics( self, is_fp16: bool = True, device: str = "cuda", generator_seed: int = 0, expected_slice: np.ndarray = None, model_id: str = "prs-eth/marigold-iid-appearance-v1-1", image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg", atol: float = 1e-4, **pipe_kwargs, ): from_pretrained_kwargs = {} if is_fp16: from_pretrained_kwargs["variant"] = "fp16" from_pretrained_kwargs["torch_dtype"] = torch.float16 pipe = MarigoldIntrinsicsPipeline.from_pretrained(model_id, **from_pretrained_kwargs) if device in ["cuda", "xpu"]: pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(generator_seed) image = load_image(image_url) width, height = image.size prediction = pipe(image, generator=generator, **pipe_kwargs).prediction prediction_slice = prediction[0, -3:, -3:, -1].flatten() if pipe_kwargs.get("match_input_resolution", True): self.assertEqual(prediction.shape, (2, height, width, 3), "Unexpected output resolution") else: self.assertTrue(prediction.shape[0] == 2 and prediction.shape[3] == 3, "Unexpected output dimensions") self.assertEqual( max(prediction.shape[1:3]), pipe_kwargs.get("processing_resolution", 768), "Unexpected output resolution", ) msg = f"{prediction_slice}" self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol), msg) # self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) def test_marigold_intrinsics_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self): self._test_marigold_intrinsics( is_fp16=False, device="cpu", generator_seed=0, expected_slice=np.array([0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162]), num_inference_steps=1, processing_resolution=32, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f32_accelerator_G0_S1_P768_E1_B1_M1(self): self._test_marigold_intrinsics( is_fp16=False, device=torch_device, generator_seed=0, expected_slice=np.array([0.62127, 0.61906, 0.61687, 0.61946, 0.61903, 0.61961, 0.61808, 0.62099, 0.62894]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E1_B1_M1(self): self._test_marigold_intrinsics( is_fp16=True, device=torch_device, generator_seed=0, expected_slice=np.array([0.62109, 0.61914, 0.61719, 0.61963, 0.61914, 0.61963, 0.61816, 0.62109, 0.62891]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f16_accelerator_G2024_S1_P768_E1_B1_M1(self): self._test_marigold_intrinsics( is_fp16=True, device=torch_device, generator_seed=2024, expected_slice=np.array([0.64111, 0.63916, 0.63623, 0.63965, 0.63916, 0.63965, 0.6377, 0.64062, 0.64941]), num_inference_steps=1, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f16_accelerator_G0_S2_P768_E1_B1_M1(self): self._test_marigold_intrinsics( is_fp16=True, device=torch_device, generator_seed=0, expected_slice=np.array([0.60254, 0.60059, 0.59961, 0.60156, 0.60107, 0.60205, 0.60254, 0.60449, 0.61133]), num_inference_steps=2, processing_resolution=768, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P512_E1_B1_M1(self): self._test_marigold_intrinsics( is_fp16=True, device=torch_device, generator_seed=0, expected_slice=np.array([0.64551, 0.64453, 0.64404, 0.64502, 0.64844, 0.65039, 0.64502, 0.65039, 0.65332]), num_inference_steps=1, processing_resolution=512, ensemble_size=1, batch_size=1, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E3_B1_M1(self): self._test_marigold_intrinsics( is_fp16=True, device=torch_device, generator_seed=0, expected_slice=np.array([0.61572, 0.61377, 0.61182, 0.61426, 0.61377, 0.61426, 0.61279, 0.61572, 0.62354]), num_inference_steps=1, processing_resolution=768, ensemble_size=3, ensembling_kwargs={"reduction": "mean"}, batch_size=1, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E4_B2_M1(self): self._test_marigold_intrinsics( is_fp16=True, device=torch_device, generator_seed=0, expected_slice=np.array([0.61914, 0.6167, 0.61475, 0.61719, 0.61719, 0.61768, 0.61572, 0.61914, 0.62695]), num_inference_steps=1, processing_resolution=768, ensemble_size=4, ensembling_kwargs={"reduction": "mean"}, batch_size=2, match_input_resolution=True, ) def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P512_E1_B1_M0(self): self._test_marigold_intrinsics( is_fp16=True, device=torch_device, generator_seed=0, expected_slice=np.array([0.65332, 0.64697, 0.64648, 0.64844, 0.64697, 0.64111, 0.64941, 0.64209, 0.65332]), num_inference_steps=1, processing_resolution=512, ensemble_size=1, batch_size=1, match_input_resolution=False, )