# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import ( AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, LlamaForCausalLM, T5EncoderModel, ) from diffusers import ( AutoencoderKL, FlowMatchEulerDiscreteScheduler, HiDreamImagePipeline, HiDreamImageTransformer2DModel, ) from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = HiDreamImagePipeline params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "prompt_embeds", "negative_prompt_embeds"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params test_layerwise_casting = True supports_dduf = False def get_dummy_components(self): torch.manual_seed(0) transformer = HiDreamImageTransformer2DModel( patch_size=2, in_channels=4, out_channels=4, num_layers=1, num_single_layers=1, attention_head_dim=8, num_attention_heads=4, caption_channels=[32, 16], text_emb_dim=64, num_routed_experts=4, num_activated_experts=2, axes_dims_rope=(4, 2, 2), max_resolution=(32, 32), llama_layers=(0, 1), ).eval() torch.manual_seed(0) vae = AutoencoderKL(scaling_factor=0.3611, shift_factor=0.1159) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, max_position_embeddings=128, ) torch.manual_seed(0) text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") text_encoder_4.generation_config.pad_token_id = 1 tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer_4 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM") scheduler = FlowMatchEulerDiscreteScheduler() components = { "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "text_encoder_3": text_encoder_3, "tokenizer_3": tokenizer_3, "text_encoder_4": text_encoder_4, "tokenizer_4": tokenizer_4, "transformer": transformer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs)[0] generated_image = image[0] self.assertEqual(generated_image.shape, (128, 128, 3)) expected_image = torch.randn(128, 128, 3).numpy() max_diff = np.abs(generated_image - expected_image).max() self.assertLessEqual(max_diff, 1e10) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-4)