# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from typing import Any, Dict, Optional, Tuple import torch from ..utils.logging import get_logger logger = get_logger(__name__) # pylint: disable=invalid-name class ModelHook: r""" A hook that contains callbacks to be executed just before and after the forward method of a model. """ _is_stateful = False def __init__(self): self.fn_ref: "HookFunctionReference" = None def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module: r""" Hook that is executed when a model is initialized. Args: module (`torch.nn.Module`): The module attached to this hook. """ return module def deinitalize_hook(self, module: torch.nn.Module) -> torch.nn.Module: r""" Hook that is executed when a model is deinitialized. Args: module (`torch.nn.Module`): The module attached to this hook. """ return module def pre_forward(self, module: torch.nn.Module, *args, **kwargs) -> Tuple[Tuple[Any], Dict[str, Any]]: r""" Hook that is executed just before the forward method of the model. Args: module (`torch.nn.Module`): The module whose forward pass will be executed just after this event. args (`Tuple[Any]`): The positional arguments passed to the module. kwargs (`Dict[Str, Any]`): The keyword arguments passed to the module. Returns: `Tuple[Tuple[Any], Dict[Str, Any]]`: A tuple with the treated `args` and `kwargs`. """ return args, kwargs def post_forward(self, module: torch.nn.Module, output: Any) -> Any: r""" Hook that is executed just after the forward method of the model. Args: module (`torch.nn.Module`): The module whose forward pass been executed just before this event. output (`Any`): The output of the module. Returns: `Any`: The processed `output`. """ return output def detach_hook(self, module: torch.nn.Module) -> torch.nn.Module: r""" Hook that is executed when the hook is detached from a module. Args: module (`torch.nn.Module`): The module detached from this hook. """ return module def reset_state(self, module: torch.nn.Module): if self._is_stateful: raise NotImplementedError("This hook is stateful and needs to implement the `reset_state` method.") return module class HookFunctionReference: def __init__(self) -> None: """A container class that maintains mutable references to forward pass functions in a hook chain. Its mutable nature allows the hook system to modify the execution chain dynamically without rebuilding the entire forward pass structure. Attributes: pre_forward: A callable that processes inputs before the main forward pass. post_forward: A callable that processes outputs after the main forward pass. forward: The current forward function in the hook chain. original_forward: The original forward function, stored when a hook provides a custom new_forward. The class enables hook removal by allowing updates to the forward chain through reference modification rather than requiring reconstruction of the entire chain. When a hook is removed, only the relevant references need to be updated, preserving the execution order of the remaining hooks. """ self.pre_forward = None self.post_forward = None self.forward = None self.original_forward = None class HookRegistry: def __init__(self, module_ref: torch.nn.Module) -> None: super().__init__() self.hooks: Dict[str, ModelHook] = {} self._module_ref = module_ref self._hook_order = [] self._fn_refs = [] def register_hook(self, hook: ModelHook, name: str) -> None: if name in self.hooks.keys(): raise ValueError( f"Hook with name {name} already exists in the registry. Please use a different name or " f"first remove the existing hook and then add a new one." ) self._module_ref = hook.initialize_hook(self._module_ref) def create_new_forward(function_reference: HookFunctionReference): def new_forward(module, *args, **kwargs): args, kwargs = function_reference.pre_forward(module, *args, **kwargs) output = function_reference.forward(*args, **kwargs) return function_reference.post_forward(module, output) return new_forward forward = self._module_ref.forward fn_ref = HookFunctionReference() fn_ref.pre_forward = hook.pre_forward fn_ref.post_forward = hook.post_forward fn_ref.forward = forward if hasattr(hook, "new_forward"): fn_ref.original_forward = forward fn_ref.forward = functools.update_wrapper( functools.partial(hook.new_forward, self._module_ref), hook.new_forward ) rewritten_forward = create_new_forward(fn_ref) self._module_ref.forward = functools.update_wrapper( functools.partial(rewritten_forward, self._module_ref), rewritten_forward ) hook.fn_ref = fn_ref self.hooks[name] = hook self._hook_order.append(name) self._fn_refs.append(fn_ref) def get_hook(self, name: str) -> Optional[ModelHook]: return self.hooks.get(name, None) def remove_hook(self, name: str, recurse: bool = True) -> None: if name in self.hooks.keys(): num_hooks = len(self._hook_order) hook = self.hooks[name] index = self._hook_order.index(name) fn_ref = self._fn_refs[index] old_forward = fn_ref.forward if fn_ref.original_forward is not None: old_forward = fn_ref.original_forward if index == num_hooks - 1: self._module_ref.forward = old_forward else: self._fn_refs[index + 1].forward = old_forward self._module_ref = hook.deinitalize_hook(self._module_ref) del self.hooks[name] self._hook_order.pop(index) self._fn_refs.pop(index) if recurse: for module_name, module in self._module_ref.named_modules(): if module_name == "": continue if hasattr(module, "_diffusers_hook"): module._diffusers_hook.remove_hook(name, recurse=False) def reset_stateful_hooks(self, recurse: bool = True) -> None: for hook_name in reversed(self._hook_order): hook = self.hooks[hook_name] if hook._is_stateful: hook.reset_state(self._module_ref) if recurse: for module_name, module in self._module_ref.named_modules(): if module_name == "": continue if hasattr(module, "_diffusers_hook"): module._diffusers_hook.reset_stateful_hooks(recurse=False) @classmethod def check_if_exists_or_initialize(cls, module: torch.nn.Module) -> "HookRegistry": if not hasattr(module, "_diffusers_hook"): module._diffusers_hook = cls(module) return module._diffusers_hook def __repr__(self) -> str: registry_repr = "" for i, hook_name in enumerate(self._hook_order): if self.hooks[hook_name].__class__.__repr__ is not object.__repr__: hook_repr = self.hooks[hook_name].__repr__() else: hook_repr = self.hooks[hook_name].__class__.__name__ registry_repr += f" ({i}) {hook_name} - {hook_repr}" if i < len(self._hook_order) - 1: registry_repr += "\n" return f"HookRegistry(\n{registry_repr}\n)"