Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,883 Bytes
daa6779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
"""
-----------------------------------------------------------------------------
Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
-----------------------------------------------------------------------------
"""
import os
from functools import wraps
from typing import Literal
import numpy as np
import torch
import trimesh
from kiui.mesh_utils import clean_mesh, decimate_mesh
# Adapted from https://github.com/Tencent/Hunyuan3D-2/blob/main/hy3dgen/shapegen/utils.py#L38
class sync_timer:
"""
Synchronized timer to count the inference time of `nn.Module.forward` or else.
set env var TIMER=1 to enable logging!
Example as context manager:
```python
with timer('name'):
run()
```
Example as decorator:
```python
@timer('name')
def run():
pass
```
"""
def __init__(self, name=None, flag_env="TIMER"):
self.name = name
self.flag_env = flag_env
def __enter__(self):
if os.environ.get(self.flag_env, "0") == "1":
self.start = torch.cuda.Event(enable_timing=True)
self.end = torch.cuda.Event(enable_timing=True)
self.start.record()
return lambda: self.time
def __exit__(self, exc_type, exc_value, exc_tb):
if os.environ.get(self.flag_env, "0") == "1":
self.end.record()
torch.cuda.synchronize()
self.time = self.start.elapsed_time(self.end)
if self.name is not None:
print(f"{self.name} takes {self.time} ms")
def __call__(self, func):
@wraps(func)
def wrapper(*args, **kwargs):
with self:
result = func(*args, **kwargs)
return result
return wrapper
@torch.no_grad()
def calculate_iou(pred: torch.Tensor, gt: torch.Tensor, target_value: int, thresh: float = 0) -> torch.Tensor:
"""Calculate the Intersection over Union (IoU) between two volumes.
Args:
pred (torch.Tensor): [*] continuous value between 0 and 1
gt (torch.Tensor): [*] discrete value of 0 or 1
target_value (int): The value to be considered as the target class
Returns:
torch.Tensor: IoU value
"""
# Ensure volumes have the same shape
assert pred.shape == gt.shape, "Volumes must have the same shape"
# binarize
pred_binary = pred > thresh
gt = gt > thresh
# Convert the volumes to boolean tensors for logical operations
intersection = torch.logical_and(pred_binary == target_value, gt == target_value).sum().float()
union = torch.logical_or(pred_binary == target_value, gt == target_value).sum().float()
# Compute IoU
iou = intersection / union if union != 0 else torch.tensor(0.0)
return iou
@torch.no_grad()
def calculate_metrics(
pred: torch.Tensor, gt: torch.Tensor, target_value: int = 1, thresh: float = 0.5
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Calculate Precision, Recall, and F1 between two volumes.
Args:
pred (torch.Tensor): [*] continuous value between 0 and 1
gt (torch.Tensor): [*] discrete value of 0 or 1
target_value (int): The value to be considered as the target class
Returns:
tuple: Precision, Recall, F1 values
"""
assert pred.shape == gt.shape, f"Pred {pred.shape} and gt {gt.shape} must have the same shape"
# Binarize prediction
pred_binary = pred > thresh
gt = gt > thresh
# True Positive (TP): pred == target_value and gt == target_value
true_positive = torch.logical_and(pred_binary == target_value, gt == target_value).sum().float()
# False Positive (FP): pred == target_value and gt != target_value
false_positive = torch.logical_and(pred_binary == target_value, gt != target_value).sum().float()
# False Negative (FN): pred != target_value and gt == target_value
false_negative = torch.logical_and(pred_binary != target_value, gt == target_value).sum().float()
# Precision: TP / (TP + FP), best to detect False Positives
precision = (
true_positive / (true_positive + false_positive) if (true_positive + false_positive) != 0 else torch.tensor(0.0)
)
# Recall: TP / (TP + FN), best to detect False Negatives
recall = (
true_positive / (true_positive + false_negative) if (true_positive + false_negative) != 0 else torch.tensor(0.0)
)
# f1: 2 / (1 / precision + 1 / recall)
f1 = 2 / (1 / precision + 1 / recall) if (precision != 0 and recall != 0) else torch.tensor(0.0)
return precision, recall, f1
# Adapted from https://github.com/Stability-AI/stablediffusion/blob/main/ldm/modules/distributions/distributions.py#L24
class DiagonalGaussianDistribution:
"""VAE latent"""
def __init__(self, mean, logvar, deterministic=False):
# mean, logvar: [B, L, D] x 2
self.mean, self.logvar = mean, logvar
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean, device=self.mean.device, dtype=self.mean.dtype)
def sample(self, weight: float = 1.0):
sample = weight * torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype)
x = self.mean + self.std * sample
return x
def kl(self, other=None, dims=[1, 2]):
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.mean(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=dims)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=dims,
)
def nll(self, sample, dims=[1, 2]):
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.mean(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)
def mode(self):
return self.mean
class DummyLatent:
def __init__(self, mean):
self.mean = mean
def sample(self, weight=0):
# simply perturb the mean
if weight > 0:
noise = torch.randn_like(self.mean) * weight
else:
noise = 0
return self.mean + noise
def mode(self):
return self.mean
def kl(self):
# just an l2 penalty
return 0.5 * torch.mean(torch.pow(self.mean, 2))
def construct_grid_points(
resolution: int,
indexing: str = "ij",
):
"""Generate dense grid points in [-1, 1]^3.
Args:
resolution (int): resolution of the grid
indexing (str, optional): indexing of the grid. Defaults to "ij".
Returns:
torch.Tensor: grid points (resolution + 1, resolution + 1, resolution + 1, 3), inside bbox.
"""
x = np.linspace(-1, 1, resolution + 1, dtype=np.float32)
y = np.linspace(-1, 1, resolution + 1, dtype=np.float32)
z = np.linspace(-1, 1, resolution + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyzs = np.stack((xs, ys, zs), axis=-1)
xyzs = torch.from_numpy(xyzs).float()
return xyzs
_diso_session = None # lazy session for reuse
@sync_timer("extract_mesh")
def extract_mesh(
grid_vals: torch.Tensor,
resolution: int,
isosurface_level: float = 0,
backend: Literal["mcubes", "diso"] = "mcubes",
):
"""Extract mesh from grid occupancy.
Args:
grid_vals (torch.Tensor): [resolution + 1, resolution + 1, resolution + 1], assume to be TSDF in [-1, 1] (inner is positive)
resolution (int, optional): Grid resolution.
isosurface_level (float, optional): Iso-surface level. Defaults to 0.
backend (Literal["mcubes", "diso"], optional): Backend for mesh extraction. Defaults to "diso", which uses GPU and is faster.
Returns:
vertices (np.ndarray): [N, 3], float32, in [-1, 1]
faces (np.ndarray): [M, 3], int32
"""
grid_vals = grid_vals.view(resolution + 1, resolution + 1, resolution + 1)
if backend == "mcubes":
try:
import mcubes
except ImportError:
os.system("pip install pymcubes")
import mcubes
grid_vals = grid_vals.float().cpu().numpy()
verts, faces = mcubes.marching_cubes(grid_vals, isosurface_level)
verts = 2 * verts / resolution - 1.0 # normalize to [-1, 1]
elif backend == "diso":
try:
import diso
except ImportError:
os.system("pip install diso")
import diso
global _diso_session
if _diso_session is None:
_diso_session = diso.DiffDMC(dtype=torch.float32).cuda()
grid_vals = -grid_vals.float().cuda() # diso assumes inner is NEGATIVE!
verts, faces = _diso_session(grid_vals, deform=None, normalize=True) # verts in [0, 1]
verts = verts.cpu().numpy() * 2 - 1.0 # normalize to [-1, 1]
faces = faces.cpu().numpy()
return verts, faces
@sync_timer("postprocess_mesh")
def postprocess_mesh(mesh: trimesh.Trimesh, decimate_target=100000):
vertices = mesh.vertices
triangles = mesh.faces
if vertices.shape[0] > 0 and triangles.shape[0] > 0:
vertices, triangles = clean_mesh(vertices, triangles, remesh=False, min_f=25, min_d=5)
if triangles.shape[0] > decimate_target:
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target, optimalplacement=False)
if vertices.shape[0] > 0 and triangles.shape[0] > 0:
vertices, triangles = clean_mesh(vertices, triangles, remesh=False, min_f=25, min_d=5)
mesh.vertices = vertices
mesh.faces = triangles
return mesh
def sphere_normalize(vertices):
bmin = vertices.min(axis=0)
bmax = vertices.max(axis=0)
bcenter = (bmax + bmin) / 2
radius = np.linalg.norm(vertices - bcenter, axis=-1).max()
vertices = (vertices - bcenter) / radius # to [-1, 1]
return vertices
def box_normalize(vertices, bound=0.95):
bmin = vertices.min(axis=0)
bmax = vertices.max(axis=0)
bcenter = (bmax + bmin) / 2
vertices = bound * (vertices - bcenter) / (bmax - bmin).max()
return vertices
|