Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,843 Bytes
daa6779 3cb3552 daa6779 3cb3552 daa6779 3cb3552 917d511 4c2da87 b703ea2 4c2da87 b703ea2 3cb3552 daa6779 3cb3552 52362ee 917d511 3cb3552 917d511 daa6779 3cb3552 daa6779 8ba0984 daa6779 8ba0984 daa6779 8ba0984 daa6779 8ba0984 daa6779 3cb3552 daa6779 3cb3552 daa6779 3cb3552 4c2da87 b703ea2 3cb3552 52362ee 3cb3552 daa6779 3cb3552 daa6779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import numpy as np
import cv2
import kiui
import trimesh
import torch
import rembg
from datetime import datetime
import subprocess
import gradio as gr
try:
# running on Hugging Face Spaces
import spaces
except ImportError:
# running locally, use a dummy space
class spaces:
class GPU:
def __init__(self, duration=60):
self.duration = duration
def __call__(self, func):
return func
from flow.model import Model
from flow.configs.schema import ModelConfig
from flow.utils import get_random_color, recenter_foreground
from vae.utils import postprocess_mesh
# download checkpoints
from huggingface_hub import hf_hub_download
flow_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="flow.pt")
vae_ckpt_path = hf_hub_download(repo_id="nvidia/PartPacker", filename="vae.pt")
TRIMESH_GLB_EXPORT = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).astype(np.float32)
MAX_SEED = np.iinfo(np.int32).max
bg_remover = rembg.new_session()
# model config
model_config = ModelConfig(
vae_conf="vae.configs.part_woenc",
vae_ckpt_path=vae_ckpt_path,
qknorm=True,
qknorm_type="RMSNorm",
use_pos_embed=False,
dino_model="dinov2_vitg14",
hidden_dim=1536,
flow_shift=3.0,
logitnorm_mean=1.0,
logitnorm_std=1.0,
latent_size=4096,
use_parts=True,
)
# instantiate model
model = Model(model_config).eval().cuda().bfloat16()
# load weight
ckpt_dict = torch.load(flow_ckpt_path, weights_only=True)
model.load_state_dict(ckpt_dict, strict=True)
# get random seed
def get_random_seed(randomize_seed, seed):
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
return seed
# process image
@spaces.GPU(duration=10)
def process_image(image_path):
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
image = cv2.resize(image, (518, 518), interpolation=cv2.INTER_AREA)
if image.shape[-1] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# bg removal if there is no alpha channel
image = rembg.remove(image, session=bg_remover) # [H, W, 4]
mask = image[..., -1] > 0
image = recenter_foreground(image, mask, border_ratio=0.1)
image = image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) # white background
image = (image * 255).astype(np.uint8)
return image
# process generation
@spaces.GPU(duration=60)
def process_3d(input_image, num_steps=50, cfg_scale=7, grid_res=384, seed=42, simplify_mesh=False, target_num_faces=100000):
# seed
kiui.seed_everything(seed)
# output path
os.makedirs("output", exist_ok=True)
output_glb_path = f"output/partpacker_{datetime.now().strftime('%Y%m%d_%H%M%S')}.glb"
# input image (assume processed to RGBA uint8)
image = input_image.astype(np.float32) / 255.0
image_tensor = torch.from_numpy(image).permute(2, 0, 1).contiguous().unsqueeze(0).float().cuda()
data = {"cond_images": image_tensor}
with torch.inference_mode():
results = model(data, num_steps=num_steps, cfg_scale=cfg_scale)
latent = results["latent"]
# query mesh
data_part0 = {"latent": latent[:, : model.config.latent_size, :]}
data_part1 = {"latent": latent[:, model.config.latent_size :, :]}
with torch.inference_mode():
results_part0 = model.vae(data_part0, resolution=grid_res)
results_part1 = model.vae(data_part1, resolution=grid_res)
if not simplify_mesh:
target_num_faces = -1
vertices, faces = results_part0["meshes"][0]
mesh_part0 = trimesh.Trimesh(vertices, faces)
mesh_part0.vertices = mesh_part0.vertices @ TRIMESH_GLB_EXPORT.T
mesh_part0 = postprocess_mesh(mesh_part0, target_num_faces)
parts = mesh_part0.split(only_watertight=False)
vertices, faces = results_part1["meshes"][0]
mesh_part1 = trimesh.Trimesh(vertices, faces)
mesh_part1.vertices = mesh_part1.vertices @ TRIMESH_GLB_EXPORT.T
mesh_part1 = postprocess_mesh(mesh_part1, target_num_faces)
parts.extend(mesh_part1.split(only_watertight=False))
# split connected components and assign different colors
for j, part in enumerate(parts):
# each component uses a random color
part.visual.vertex_colors = get_random_color(j, use_float=True)
mesh = trimesh.Scene(parts)
# export the whole mesh
mesh.export(output_glb_path)
return output_glb_path
# gradio UI
_TITLE = '''PartPacker: Efficient Part-level 3D Object Generation via Dual Volume Packing'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://research.nvidia.com/labs/dir/partpacker/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/NVlabs/PartPacker"><img src='https://img.shields.io/github/stars/NVlabs/PartPacker?style=social'/></a>
</div>
* Each part is visualized with a random color, and can be separated in the GLB file.
* If the output is not satisfactory, please try different random seeds!
'''
block = gr.Blocks(title=_TITLE).queue()
with block:
with gr.Row():
with gr.Column():
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
# input image
input_image = gr.Image(label="Input Image", type="file_path") # use file_path and load manually
seg_image = gr.Image(label="Segmentation Result", type="numpy", interactive=False)
with gr.Accordion("Settings", open=True):
# inference steps
num_steps = gr.Slider(label="Inference steps", minimum=1, maximum=100, step=1, value=50)
# cfg scale
cfg_scale = gr.Slider(label="CFG scale", minimum=2, maximum=10, step=0.1, value=7.0)
# grid resolution
input_grid_res = gr.Slider(label="Grid resolution", minimum=256, maximum=512, step=1, value=384)
# random seed
with gr.Row():
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
# simplify mesh
with gr.Row():
simplify_mesh = gr.Checkbox(label="Simplify mesh", value=False)
target_num_faces = gr.Slider(label="Face number", minimum=10000, maximum=1000000, step=1000, value=100000)
# gen button
button_gen = gr.Button("Generate")
with gr.Column(scale=1):
# glb file
output_model = gr.Model3D(label="Geometry", height=512)
with gr.Row():
gr.Examples(
examples=[
["examples/rabbit.png"],
["examples/robot.png"],
["examples/teapot.png"],
["examples/barrel.png"],
["examples/cactus.png"],
["examples/cyan_car.png"],
["examples/pickup.png"],
["examples/swivelchair.png"],
["examples/warhammer.png"],
],
fn=process_image, # still need to click button_gen to get the 3d
inputs=[input_image],
outputs=[seg_image],
cache_examples=False,
)
button_gen.click(
process_image, inputs=[input_image], outputs=[seg_image]
).then(
get_random_seed, inputs=[randomize_seed, seed], outputs=[seed]
).then(
process_3d, inputs=[seg_image, num_steps, cfg_scale, input_grid_res, seed, simplify_mesh, target_num_faces], outputs=[output_model]
)
block.launch() |