File size: 19,655 Bytes
daa6779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""
-----------------------------------------------------------------------------
Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
-----------------------------------------------------------------------------
"""

from typing import Literal

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from vae.configs.schema import ModelConfig
from vae.modules.transformer import AttentionBlock, FlashQueryLayer
from vae.utils import (
    DiagonalGaussianDistribution,
    DummyLatent,
    calculate_iou,
    calculate_metrics,
    construct_grid_points,
    extract_mesh,
    sync_timer,
)


class Model(nn.Module):
    def __init__(self, config: ModelConfig) -> None:
        super().__init__()
        self.config = config

        self.precision = torch.bfloat16  # manually handle low-precision training, always use bf16

        # point encoder
        self.proj_input = nn.Linear(3 + config.point_fourier_dim, config.hidden_dim)

        self.perceiver = AttentionBlock(
            config.hidden_dim,
            num_heads=config.num_heads,
            dim_context=config.hidden_dim,
            qknorm=config.qknorm,
            qknorm_type=config.qknorm_type,
        )

        if self.config.salient_attn_mode == "dual":
            self.perceiver_dorases = AttentionBlock(
                config.hidden_dim,
                num_heads=config.num_heads,
                dim_context=config.hidden_dim,
                qknorm=config.qknorm,
                qknorm_type=config.qknorm_type,
            )

        # self-attention encoder
        self.encoder = nn.ModuleList(
            [
                AttentionBlock(
                    config.hidden_dim, config.num_heads, qknorm=config.qknorm, qknorm_type=config.qknorm_type
                )
                for _ in range(config.num_enc_layers)
            ]
        )

        # vae bottleneck
        self.norm_down = nn.LayerNorm(config.hidden_dim)
        self.proj_down_mean = nn.Linear(config.hidden_dim, config.latent_dim)
        if not self.config.use_ae:
            self.proj_down_std = nn.Linear(config.hidden_dim, config.latent_dim)
        self.proj_up = nn.Linear(config.latent_dim, config.dec_hidden_dim)

        # self-attention decoder
        self.decoder = nn.ModuleList(
            [
                AttentionBlock(
                    config.dec_hidden_dim, config.dec_num_heads, qknorm=config.qknorm, qknorm_type=config.qknorm_type
                )
                for _ in range(config.num_dec_layers)
            ]
        )

        # cross-attention query
        self.proj_query = nn.Linear(3 + config.point_fourier_dim, config.query_hidden_dim)
        if self.config.use_flash_query:
            self.norm_query_context = nn.LayerNorm(config.hidden_dim, eps=1e-6, elementwise_affine=False)
            self.attn_query = FlashQueryLayer(
                config.query_hidden_dim,
                num_heads=config.query_num_heads,
                dim_context=config.hidden_dim,
                qknorm=config.qknorm,
                qknorm_type=config.qknorm_type,
            )
        else:
            self.attn_query = AttentionBlock(
                config.query_hidden_dim,
                num_heads=config.query_num_heads,
                dim_context=config.hidden_dim,
                qknorm=config.qknorm,
                qknorm_type=config.qknorm_type,
            )
        self.norm_out = nn.LayerNorm(config.query_hidden_dim)
        self.proj_out = nn.Linear(config.query_hidden_dim, 1)

        # preload from a checkpoint (NOTE: this happens BEFORE checkpointer loading latest checkpoint!)
        if self.config.pretrain_path is not None:
            try:
                ckpt = torch.load(self.config.pretrain_path)  # local path
                self.load_state_dict(ckpt["model"], strict=True)
                del ckpt
                print(f"Loaded VAE from {self.config.pretrain_path}")
            except Exception as e:
                print(
                    f"Failed to load VAE from {self.config.pretrain_path}: {e}, make sure you resumed from a valid checkpoint!"
                )

        # log
        n_params = 0
        for p in self.parameters():
            n_params += p.numel()
        print(f"Number of parameters in VAE: {n_params / 1e6:.2f}M")

    # override to support tolerant loading (only load matched shape)
    def load_state_dict(self, state_dict, strict=True, assign=False):
        local_state_dict = self.state_dict()
        seen_keys = {k: False for k in local_state_dict.keys()}
        for k, v in state_dict.items():
            if k in local_state_dict:
                seen_keys[k] = True
                if local_state_dict[k].shape == v.shape:
                    local_state_dict[k].copy_(v)
                else:
                    print(f"mismatching shape for key {k}: loaded {local_state_dict[k].shape} but model has {v.shape}")
            else:
                print(f"unexpected key {k} in loaded state dict")
        for k in seen_keys:
            if not seen_keys[k]:
                print(f"missing key {k} in loaded state dict")

    def fourier_encoding(self, points: torch.Tensor):
        # points: [B, N, 3], float32 for precision
        # assert points.dtype == torch.float32, "Query points must be float32"

        F = self.config.point_fourier_dim // (2 * points.shape[-1])

        if self.config.fourier_version == "v1":  # default
            exponent = torch.arange(1, F + 1, device=points.device, dtype=torch.float32) / F  # [F], range from 0 to 1
            freq_band = 512**exponent  # [F], min frequency is 1, max frequency is 1/freq
            freq_band *= torch.pi
        elif self.config.fourier_version == "v2":
            exponent = torch.arange(F, device=points.device, dtype=torch.float32) / (F - 1)  # [F], range from 0 to 1
            freq_band = 1024**exponent  # [F]
            freq_band *= torch.pi
        elif self.config.fourier_version == "v3":  # hunyuan3d-2
            freq_band = 2 ** torch.arange(F, device=points.device, dtype=torch.float32)  # [F]

        spectrum = points.unsqueeze(-1) * freq_band  # [B,...,3,F]
        sin, cos = spectrum.sin(), spectrum.cos()  # [B,...,3,F]
        input_enc = torch.stack([sin, cos], dim=-2)  # [B,...,3,2,F]
        input_enc = input_enc.view(*points.shape[:-1], -1)  # [B,...,6F] = [B,...,dim]
        return torch.cat([input_enc, points], dim=-1).to(dtype=self.precision)  # [B,...,dim+input_dim]

    def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
        super().on_train_start(memory_format=memory_format)
        self.to(dtype=self.precision, memory_format=memory_format)  # use bfloat16 for training

    def encode(self, data: dict[str, torch.Tensor]):
        # uniform points
        pointcloud = data["pointcloud"]  # [B, N, 3]

        # fourier embed and project
        pointcloud = self.fourier_encoding(pointcloud)  # [B, N, 3+C]
        pointcloud = self.proj_input(pointcloud)  # [B, N, hidden_dim]

        # salient points
        if self.config.use_salient_point:
            pointcloud_dorases = data["pointcloud_dorases"]  # [B, M, 3]

            # fourier embed and project (shared weights)
            pointcloud_dorases = self.fourier_encoding(pointcloud_dorases)  # [B, M, 3+C]
            pointcloud_dorases = self.proj_input(pointcloud_dorases)  # [B, M, hidden_dim]

        # gather fps point
        fps_indices = data["fps_indices"]  # [B, N']
        pointcloud_query = torch.gather(pointcloud, 1, fps_indices.unsqueeze(-1).expand(-1, -1, pointcloud.shape[-1]))

        if self.config.use_salient_point:
            fps_indices_dorases = data["fps_indices_dorases"]  # [B, M']

            if fps_indices_dorases.shape[1] > 0:
                pointcloud_query_dorases = torch.gather(
                    pointcloud_dorases,
                    1,
                    fps_indices_dorases.unsqueeze(-1).expand(-1, -1, pointcloud_dorases.shape[-1]),
                )

                # combine both fps points as the query
                pointcloud_query = torch.cat(
                    [pointcloud_query, pointcloud_query_dorases], dim=1
                )  # [B, N'+M', hidden_dim]

            # dual cross-attention
            if self.config.salient_attn_mode == "dual_shared":
                hidden_states = self.perceiver(pointcloud_query, pointcloud) + self.perceiver(
                    pointcloud_query, pointcloud_dorases
                )  # [B, N'+M', hidden_dim]
            elif self.config.salient_attn_mode == "dual":
                hidden_states = self.perceiver(pointcloud_query, pointcloud) + self.perceiver_dorases(
                    pointcloud_query, pointcloud_dorases
                )
            else:  # single, hunyuan3d-2 style
                hidden_states = self.perceiver(pointcloud_query, torch.cat([pointcloud, pointcloud_dorases], dim=1))
        else:
            hidden_states = self.perceiver(pointcloud_query, pointcloud)  # [B, N', hidden_dim]

        # encoder
        for block in self.encoder:
            hidden_states = block(hidden_states)

        # bottleneck
        hidden_states = self.norm_down(hidden_states)
        latent_mean = self.proj_down_mean(hidden_states).float()
        if not self.config.use_ae:
            latent_std = self.proj_down_std(hidden_states).float()
            posterior = DiagonalGaussianDistribution(latent_mean, latent_std)
        else:
            posterior = DummyLatent(latent_mean)

        return posterior

    def decode(self, latent: torch.Tensor):
        latent = latent.to(dtype=self.precision)
        hidden_states = self.proj_up(latent)

        for block in self.decoder:
            hidden_states = block(hidden_states)

        return hidden_states

    def query(self, query_points: torch.Tensor, hidden_states: torch.Tensor):
        # query_points: [B, N, 3], float32 to keep the precision

        query_points = self.fourier_encoding(query_points)  # [B, N, 3+C]
        query_points = self.proj_query(query_points)  # [B, N, hidden_dim]

        # cross attention
        query_output = self.attn_query(query_points, hidden_states)  # [B, N, hidden_dim]

        # output linear
        query_output = self.norm_out(query_output)
        pred = self.proj_out(query_output)  # [B, N, 1]

        return pred

    def training_step(
        self,
        data: dict[str, torch.Tensor],
        iteration: int,
    ) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
        output = {}

        # cut off fps point during training for progressive flow
        if self.training:
            # randomly choose from a set of cutoff candidates
            cutoff_index = np.random.choice(len(self.config.cutoff_fps_prob), p=self.config.cutoff_fps_prob)
            cutoff_fps_point = self.config.cutoff_fps_point[cutoff_index]
            cutoff_fps_salient_point = self.config.cutoff_fps_salient_point[cutoff_index]
            # prefix of FPS points are still FPS points
            data["fps_indices"] = data["fps_indices"][:, :cutoff_fps_point]
            if self.config.use_salient_point:
                data["fps_indices_dorases"] = data["fps_indices_dorases"][:, :cutoff_fps_salient_point]

        loss = 0

        # encode
        posterior = self.encode(data)
        latent_geom = posterior.sample() if self.training else posterior.mode()

        # decode
        hidden_states = self.decode(latent_geom)

        # cross-attention query
        query_points = data["query_points"]  # [B, N, 3], float32

        # the context norm can be moved out to avoid repeated computation
        if self.config.use_flash_query:
            hidden_states = self.norm_query_context(hidden_states)

        pred = self.query(query_points, hidden_states).squeeze(-1).float()  # [B, N]
        gt = data["query_gt"].float()  # [B, N], in [-1, 1]

        # main loss
        loss_mse = F.mse_loss(pred, gt, reduction="mean")
        loss += loss_mse

        loss_l1 = F.l1_loss(pred, gt, reduction="mean")
        loss += loss_l1

        # kl loss
        loss_kl = posterior.kl().mean()
        loss += self.config.kl_weight * loss_kl

        # metrics
        with torch.no_grad():
            output["scalar"] = {}  # for wandb logging
            output["scalar"]["loss_mse"] = loss_mse.detach()
            output["scalar"]["loss_l1"] = loss_l1.detach()
            output["scalar"]["loss_kl"] = loss_kl.detach()
            output["scalar"]["iou_fg"] = calculate_iou(pred, gt, target_value=1)
            output["scalar"]["iou_bg"] = calculate_iou(pred, gt, target_value=0)
            output["scalar"]["precision"], output["scalar"]["recall"], output["scalar"]["f1"] = calculate_metrics(
                pred, gt, target_value=1
            )

        return output, loss

    @torch.no_grad()
    def validation_step(
        self,
        data: dict[str, torch.Tensor],
        iteration: int,
    ) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
        return self.training_step(data, iteration)

    @torch.inference_mode()
    @sync_timer("vae forward")
    def forward(
        self,
        data: dict[str, torch.Tensor],
        mode: Literal["dense", "hierarchical"] = "hierarchical",
        max_samples_per_iter: int = 512**2,
        resolution: int = 512,
        min_resolution: int = 64,  # for hierarchical
    ) -> dict[str, torch.Tensor]:
        output = {}

        # encode
        if "latent" in data:
            latent = data["latent"]
        else:
            posterior = self.encode(data)
            output["posterior"] = posterior
            latent = posterior.mode()

        output["latent"] = latent
        B = latent.shape[0]

        # decode
        hidden_states = self.decode(latent)
        output["hidden_states"] = hidden_states  # [B, N, hidden_dim] for the last cross-attention decoder

        # the context norm can be moved out to avoid repeated computation
        if self.config.use_flash_query:
            hidden_states = self.norm_query_context(hidden_states)

        # query
        def chunked_query(grid_points):
            if grid_points.shape[0] <= max_samples_per_iter:
                return self.query(grid_points.unsqueeze(0), hidden_states).squeeze(-1)  # [B, N]
            all_pred = []
            for i in range(0, grid_points.shape[0], max_samples_per_iter):
                grid_chunk = grid_points[i : i + max_samples_per_iter]
                pred_chunk = self.query(grid_chunk.unsqueeze(0), hidden_states)
                all_pred.append(pred_chunk)
            return torch.cat(all_pred, dim=1).squeeze(-1)  # [B, N]

        if mode == "dense":
            grid_points = construct_grid_points(resolution).to(latent.device)
            grid_points = grid_points.contiguous().view(-1, 3)
            grid_vals = chunked_query(grid_points).float().view(B, resolution + 1, resolution + 1, resolution + 1)

        elif mode == "hierarchical":
            assert resolution >= min_resolution, "Resolution must be greater than or equal to min_resolution"
            assert B == 1, "Only one batch is supported for hierarchical mode"

            resolutions = []
            res = resolution
            while res >= min_resolution:
                resolutions.append(res)
                res = res // 2
            resolutions.reverse()  # e.g., [64, 128, 256, 512]

            # dense-query the coarsest resolution
            res = resolutions[0]
            grid_points = construct_grid_points(res).to(latent.device)
            grid_points = grid_points.contiguous().view(-1, 3)
            grid_vals = chunked_query(grid_points).float().view(res + 1, res + 1, res + 1)

            # sparse-query finer resolutions
            dilate_kernel_3 = torch.ones(1, 1, 3, 3, 3, dtype=torch.float32, device=latent.device)
            dilate_kernel_5 = torch.ones(1, 1, 5, 5, 5, dtype=torch.float32, device=latent.device)
            for i in range(1, len(resolutions)):
                res = resolutions[i]
                # get the boundary grid mask in the coarser grid (where the grid_vals have different signs with at least one of its neighbors)
                grid_signs = grid_vals >= 0
                mask = torch.zeros_like(grid_signs)
                mask[1:, :, :] += grid_signs[1:, :, :] != grid_signs[:-1, :, :]
                mask[:-1, :, :] += grid_signs[:-1, :, :] != grid_signs[1:, :, :]
                mask[:, 1:, :] += grid_signs[:, 1:, :] != grid_signs[:, :-1, :]
                mask[:, :-1, :] += grid_signs[:, :-1, :] != grid_signs[:, 1:, :]
                mask[:, :, 1:] += grid_signs[:, :, 1:] != grid_signs[:, :, :-1]
                mask[:, :, :-1] += grid_signs[:, :, :-1] != grid_signs[:, :, 1:]
                # empirical: also add those with abs(grid_vals) < 0.95
                mask += grid_vals.abs() < 0.95
                mask = (mask > 0).float()
                # empirical: dilate the coarse mask
                if res < 512:
                    mask = mask.unsqueeze(0).unsqueeze(0)
                    mask = F.conv3d(mask, weight=dilate_kernel_3, padding=1)
                    mask = mask.squeeze(0).squeeze(0)
                # get the coarse coordinates
                cidx_x, cidx_y, cidx_z = torch.nonzero(mask, as_tuple=True)
                # fill to the fine indices
                mask_fine = torch.zeros(res + 1, res + 1, res + 1, dtype=torch.float32, device=latent.device)
                mask_fine[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
                # empirical: dilate the fine mask
                if res < 512:
                    mask_fine = mask_fine.unsqueeze(0).unsqueeze(0)
                    mask_fine = F.conv3d(mask_fine, weight=dilate_kernel_3, padding=1)
                    mask_fine = mask_fine.squeeze(0).squeeze(0)
                else:
                    mask_fine = mask_fine.unsqueeze(0).unsqueeze(0)
                    mask_fine = F.conv3d(mask_fine, weight=dilate_kernel_5, padding=2)
                    mask_fine = mask_fine.squeeze(0).squeeze(0)
                # get the fine coordinates
                fidx_x, fidx_y, fidx_z = torch.nonzero(mask_fine, as_tuple=True)
                # convert to float query points
                query_points = torch.stack([fidx_x, fidx_y, fidx_z], dim=-1)  # [N, 3]
                query_points = query_points * 2 / res - 1  # [N, 3], in [-1, 1]
                # query
                pred = chunked_query(query_points).float()
                # fill to the fine indices
                grid_vals = torch.full((res + 1, res + 1, res + 1), -100.0, dtype=torch.float32, device=latent.device)
                grid_vals[fidx_x, fidx_y, fidx_z] = pred
                # print(f"[INFO] hierarchical: resolution: {res}, valid coarse points: {len(cidx_x)}, valid fine points: {len(fidx_x)}")

            grid_vals = grid_vals.unsqueeze(0)  # [1, res+1, res+1, res+1]
            grid_vals[grid_vals <= -100.0] = float("nan")  # use nans to ignore invalid regions

        # extract mesh
        meshes = []
        for b in range(B):
            vertices, faces = extract_mesh(grid_vals[b], resolution)
            meshes.append((vertices, faces))
        output["meshes"] = meshes

        return output