Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,483 Bytes
daa6779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
"""
-----------------------------------------------------------------------------
Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
-----------------------------------------------------------------------------
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
from vae.modules.attention import CrossAttention, SelfAttention
class FeedForward(nn.Module):
def __init__(self, dim, mult=4):
super().__init__()
self.net = nn.Sequential(nn.Linear(dim, dim * mult), nn.GELU(), nn.Linear(dim * mult, dim))
def forward(self, x):
return self.net(x)
# Adapted from https://github.com/facebookresearch/DiT/blob/main/models.py#L27
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
Args:
t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
dim: the dimension of the output.
max_period: controls the minimum frequency of the embeddings.
Returns:
an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
dtype = next(self.mlp.parameters()).dtype # need to determine on the fly...
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_freq = t_freq.to(dtype=dtype)
t_emb = self.mlp(t_freq)
return t_emb
class DiTLayer(nn.Module):
def __init__(self, dim, num_heads, qknorm=False, gradient_checkpointing=True, qknorm_type="LayerNorm"):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.gradient_checkpointing = gradient_checkpointing
self.norm1 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
self.attn1 = SelfAttention(dim, num_heads, qknorm=qknorm, qknorm_type=qknorm_type)
self.norm2 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
self.attn2 = CrossAttention(dim, num_heads, context_dim=dim, qknorm=qknorm, qknorm_type=qknorm_type)
self.norm3 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
self.ff = FeedForward(dim)
self.adaln_linear = nn.Linear(dim, dim * 6, bias=True)
def forward(self, x, c, t_emb):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, x, c, t_emb, use_reentrant=False)
else:
return self._forward(x, c, t_emb)
def _forward(self, x, c, t_emb):
# x: [B, N, C], hidden states
# c: [B, M, C], condition (assume normed and projected to C)
# t_emb: [B, C], timestep embedding of adaln
# return: [B, N, C], updated hidden states
B, N, C = x.shape
t_adaln = self.adaln_linear(F.silu(t_emb)).view(B, 6, -1) # [B, 6, C]
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = t_adaln.chunk(6, dim=1)
h = self.norm1(x)
h = h * (1 + scale_msa) + shift_msa
x = x + gate_msa * self.attn1(h)
h = self.norm2(x)
x = x + self.attn2(h, c)
h = self.norm3(x)
h = h * (1 + scale_mlp) + shift_mlp
x = x + gate_mlp * self.ff(h)
return x
class DiT(nn.Module):
def __init__(
self,
hidden_dim=1024,
num_heads=16,
latent_size=2048,
latent_dim=8,
num_layers=24,
qknorm=False,
gradient_checkpointing=True,
qknorm_type="LayerNorm",
use_pos_embed=False,
use_parts=False,
part_embed_mode="part2_only",
):
super().__init__()
# project in
self.proj_in = nn.Linear(latent_dim, hidden_dim)
# positional encoding (just use a learnable positional encoding)
self.use_pos_embed = use_pos_embed
if self.use_pos_embed:
self.pos_embed = nn.Parameter(torch.randn(1, latent_size, hidden_dim) / hidden_dim**0.5)
# part encoding (a must to distinguish parts!)
self.use_parts = use_parts
self.part_embed_mode = part_embed_mode
if self.use_parts:
if self.part_embed_mode == "element":
self.part_embed = nn.Parameter(torch.randn(latent_size, hidden_dim) / hidden_dim**0.5)
elif self.part_embed_mode == "part":
self.part_embed = nn.Parameter(torch.randn(2, hidden_dim))
elif self.part_embed_mode == "part2_only":
# we only add this to the second part to distinguish from the first part
self.part_embed = nn.Parameter(torch.randn(1, hidden_dim) / hidden_dim**0.5)
# timestep encoding
self.timestep_embed = TimestepEmbedder(hidden_dim)
# transformer layers
self.layers = nn.ModuleList(
[DiTLayer(hidden_dim, num_heads, qknorm, gradient_checkpointing, qknorm_type) for _ in range(num_layers)]
)
# project out
self.norm_out = nn.LayerNorm(hidden_dim, eps=1e-6, elementwise_affine=False)
self.proj_out = nn.Linear(hidden_dim, latent_dim)
# init
self.init_weight()
def init_weight(self):
# Initialize transformer layers
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize timestep embedding MLP:
nn.init.normal_(self.timestep_embed.mlp[0].weight, std=0.02)
nn.init.normal_(self.timestep_embed.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for layer in self.layers:
nn.init.constant_(layer.adaln_linear.weight, 0)
nn.init.constant_(layer.adaln_linear.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.proj_out.weight, 0)
nn.init.constant_(self.proj_out.bias, 0)
def forward(self, x, c, t):
# x: [B, N, C], hidden states
# c: [B, M, C], condition (assume normed and projected to C)
# t: [B,], timestep
# return: [B, N, C], updated hidden states
B, N, C = x.shape
# project in
x = self.proj_in(x)
# positional encoding
if self.use_pos_embed:
x = x + self.pos_embed
# part encoding
if self.use_parts:
if self.part_embed_mode == "element":
x += self.part_embed
elif self.part_embed_mode == "part":
x[:, : x.shape[1] // 2, :] += self.part_embed[0]
x[:, x.shape[1] // 2 :, :] += self.part_embed[1]
elif self.part_embed_mode == "part2_only":
x[:, x.shape[1] // 2 :, :] += self.part_embed[0]
# timestep encoding
t_emb = self.timestep_embed(t) # [B, C]
# transformer layers
for layer in self.layers:
x = layer(x, c, t_emb)
# project out
x = self.norm_out(x)
x = self.proj_out(x)
return x
|