Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,655 Bytes
daa6779 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
"""
-----------------------------------------------------------------------------
Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
-----------------------------------------------------------------------------
"""
from typing import Literal
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from vae.configs.schema import ModelConfig
from vae.modules.transformer import AttentionBlock, FlashQueryLayer
from vae.utils import (
DiagonalGaussianDistribution,
DummyLatent,
calculate_iou,
calculate_metrics,
construct_grid_points,
extract_mesh,
sync_timer,
)
class Model(nn.Module):
def __init__(self, config: ModelConfig) -> None:
super().__init__()
self.config = config
self.precision = torch.bfloat16 # manually handle low-precision training, always use bf16
# point encoder
self.proj_input = nn.Linear(3 + config.point_fourier_dim, config.hidden_dim)
self.perceiver = AttentionBlock(
config.hidden_dim,
num_heads=config.num_heads,
dim_context=config.hidden_dim,
qknorm=config.qknorm,
qknorm_type=config.qknorm_type,
)
if self.config.salient_attn_mode == "dual":
self.perceiver_dorases = AttentionBlock(
config.hidden_dim,
num_heads=config.num_heads,
dim_context=config.hidden_dim,
qknorm=config.qknorm,
qknorm_type=config.qknorm_type,
)
# self-attention encoder
self.encoder = nn.ModuleList(
[
AttentionBlock(
config.hidden_dim, config.num_heads, qknorm=config.qknorm, qknorm_type=config.qknorm_type
)
for _ in range(config.num_enc_layers)
]
)
# vae bottleneck
self.norm_down = nn.LayerNorm(config.hidden_dim)
self.proj_down_mean = nn.Linear(config.hidden_dim, config.latent_dim)
if not self.config.use_ae:
self.proj_down_std = nn.Linear(config.hidden_dim, config.latent_dim)
self.proj_up = nn.Linear(config.latent_dim, config.dec_hidden_dim)
# self-attention decoder
self.decoder = nn.ModuleList(
[
AttentionBlock(
config.dec_hidden_dim, config.dec_num_heads, qknorm=config.qknorm, qknorm_type=config.qknorm_type
)
for _ in range(config.num_dec_layers)
]
)
# cross-attention query
self.proj_query = nn.Linear(3 + config.point_fourier_dim, config.query_hidden_dim)
if self.config.use_flash_query:
self.norm_query_context = nn.LayerNorm(config.hidden_dim, eps=1e-6, elementwise_affine=False)
self.attn_query = FlashQueryLayer(
config.query_hidden_dim,
num_heads=config.query_num_heads,
dim_context=config.hidden_dim,
qknorm=config.qknorm,
qknorm_type=config.qknorm_type,
)
else:
self.attn_query = AttentionBlock(
config.query_hidden_dim,
num_heads=config.query_num_heads,
dim_context=config.hidden_dim,
qknorm=config.qknorm,
qknorm_type=config.qknorm_type,
)
self.norm_out = nn.LayerNorm(config.query_hidden_dim)
self.proj_out = nn.Linear(config.query_hidden_dim, 1)
# preload from a checkpoint (NOTE: this happens BEFORE checkpointer loading latest checkpoint!)
if self.config.pretrain_path is not None:
try:
ckpt = torch.load(self.config.pretrain_path) # local path
self.load_state_dict(ckpt["model"], strict=True)
del ckpt
print(f"Loaded VAE from {self.config.pretrain_path}")
except Exception as e:
print(
f"Failed to load VAE from {self.config.pretrain_path}: {e}, make sure you resumed from a valid checkpoint!"
)
# log
n_params = 0
for p in self.parameters():
n_params += p.numel()
print(f"Number of parameters in VAE: {n_params / 1e6:.2f}M")
# override to support tolerant loading (only load matched shape)
def load_state_dict(self, state_dict, strict=True, assign=False):
local_state_dict = self.state_dict()
seen_keys = {k: False for k in local_state_dict.keys()}
for k, v in state_dict.items():
if k in local_state_dict:
seen_keys[k] = True
if local_state_dict[k].shape == v.shape:
local_state_dict[k].copy_(v)
else:
print(f"mismatching shape for key {k}: loaded {local_state_dict[k].shape} but model has {v.shape}")
else:
print(f"unexpected key {k} in loaded state dict")
for k in seen_keys:
if not seen_keys[k]:
print(f"missing key {k} in loaded state dict")
def fourier_encoding(self, points: torch.Tensor):
# points: [B, N, 3], float32 for precision
# assert points.dtype == torch.float32, "Query points must be float32"
F = self.config.point_fourier_dim // (2 * points.shape[-1])
if self.config.fourier_version == "v1": # default
exponent = torch.arange(1, F + 1, device=points.device, dtype=torch.float32) / F # [F], range from 0 to 1
freq_band = 512**exponent # [F], min frequency is 1, max frequency is 1/freq
freq_band *= torch.pi
elif self.config.fourier_version == "v2":
exponent = torch.arange(F, device=points.device, dtype=torch.float32) / (F - 1) # [F], range from 0 to 1
freq_band = 1024**exponent # [F]
freq_band *= torch.pi
elif self.config.fourier_version == "v3": # hunyuan3d-2
freq_band = 2 ** torch.arange(F, device=points.device, dtype=torch.float32) # [F]
spectrum = points.unsqueeze(-1) * freq_band # [B,...,3,F]
sin, cos = spectrum.sin(), spectrum.cos() # [B,...,3,F]
input_enc = torch.stack([sin, cos], dim=-2) # [B,...,3,2,F]
input_enc = input_enc.view(*points.shape[:-1], -1) # [B,...,6F] = [B,...,dim]
return torch.cat([input_enc, points], dim=-1).to(dtype=self.precision) # [B,...,dim+input_dim]
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
super().on_train_start(memory_format=memory_format)
self.to(dtype=self.precision, memory_format=memory_format) # use bfloat16 for training
def encode(self, data: dict[str, torch.Tensor]):
# uniform points
pointcloud = data["pointcloud"] # [B, N, 3]
# fourier embed and project
pointcloud = self.fourier_encoding(pointcloud) # [B, N, 3+C]
pointcloud = self.proj_input(pointcloud) # [B, N, hidden_dim]
# salient points
if self.config.use_salient_point:
pointcloud_dorases = data["pointcloud_dorases"] # [B, M, 3]
# fourier embed and project (shared weights)
pointcloud_dorases = self.fourier_encoding(pointcloud_dorases) # [B, M, 3+C]
pointcloud_dorases = self.proj_input(pointcloud_dorases) # [B, M, hidden_dim]
# gather fps point
fps_indices = data["fps_indices"] # [B, N']
pointcloud_query = torch.gather(pointcloud, 1, fps_indices.unsqueeze(-1).expand(-1, -1, pointcloud.shape[-1]))
if self.config.use_salient_point:
fps_indices_dorases = data["fps_indices_dorases"] # [B, M']
if fps_indices_dorases.shape[1] > 0:
pointcloud_query_dorases = torch.gather(
pointcloud_dorases,
1,
fps_indices_dorases.unsqueeze(-1).expand(-1, -1, pointcloud_dorases.shape[-1]),
)
# combine both fps points as the query
pointcloud_query = torch.cat(
[pointcloud_query, pointcloud_query_dorases], dim=1
) # [B, N'+M', hidden_dim]
# dual cross-attention
if self.config.salient_attn_mode == "dual_shared":
hidden_states = self.perceiver(pointcloud_query, pointcloud) + self.perceiver(
pointcloud_query, pointcloud_dorases
) # [B, N'+M', hidden_dim]
elif self.config.salient_attn_mode == "dual":
hidden_states = self.perceiver(pointcloud_query, pointcloud) + self.perceiver_dorases(
pointcloud_query, pointcloud_dorases
)
else: # single, hunyuan3d-2 style
hidden_states = self.perceiver(pointcloud_query, torch.cat([pointcloud, pointcloud_dorases], dim=1))
else:
hidden_states = self.perceiver(pointcloud_query, pointcloud) # [B, N', hidden_dim]
# encoder
for block in self.encoder:
hidden_states = block(hidden_states)
# bottleneck
hidden_states = self.norm_down(hidden_states)
latent_mean = self.proj_down_mean(hidden_states).float()
if not self.config.use_ae:
latent_std = self.proj_down_std(hidden_states).float()
posterior = DiagonalGaussianDistribution(latent_mean, latent_std)
else:
posterior = DummyLatent(latent_mean)
return posterior
def decode(self, latent: torch.Tensor):
latent = latent.to(dtype=self.precision)
hidden_states = self.proj_up(latent)
for block in self.decoder:
hidden_states = block(hidden_states)
return hidden_states
def query(self, query_points: torch.Tensor, hidden_states: torch.Tensor):
# query_points: [B, N, 3], float32 to keep the precision
query_points = self.fourier_encoding(query_points) # [B, N, 3+C]
query_points = self.proj_query(query_points) # [B, N, hidden_dim]
# cross attention
query_output = self.attn_query(query_points, hidden_states) # [B, N, hidden_dim]
# output linear
query_output = self.norm_out(query_output)
pred = self.proj_out(query_output) # [B, N, 1]
return pred
def training_step(
self,
data: dict[str, torch.Tensor],
iteration: int,
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
output = {}
# cut off fps point during training for progressive flow
if self.training:
# randomly choose from a set of cutoff candidates
cutoff_index = np.random.choice(len(self.config.cutoff_fps_prob), p=self.config.cutoff_fps_prob)
cutoff_fps_point = self.config.cutoff_fps_point[cutoff_index]
cutoff_fps_salient_point = self.config.cutoff_fps_salient_point[cutoff_index]
# prefix of FPS points are still FPS points
data["fps_indices"] = data["fps_indices"][:, :cutoff_fps_point]
if self.config.use_salient_point:
data["fps_indices_dorases"] = data["fps_indices_dorases"][:, :cutoff_fps_salient_point]
loss = 0
# encode
posterior = self.encode(data)
latent_geom = posterior.sample() if self.training else posterior.mode()
# decode
hidden_states = self.decode(latent_geom)
# cross-attention query
query_points = data["query_points"] # [B, N, 3], float32
# the context norm can be moved out to avoid repeated computation
if self.config.use_flash_query:
hidden_states = self.norm_query_context(hidden_states)
pred = self.query(query_points, hidden_states).squeeze(-1).float() # [B, N]
gt = data["query_gt"].float() # [B, N], in [-1, 1]
# main loss
loss_mse = F.mse_loss(pred, gt, reduction="mean")
loss += loss_mse
loss_l1 = F.l1_loss(pred, gt, reduction="mean")
loss += loss_l1
# kl loss
loss_kl = posterior.kl().mean()
loss += self.config.kl_weight * loss_kl
# metrics
with torch.no_grad():
output["scalar"] = {} # for wandb logging
output["scalar"]["loss_mse"] = loss_mse.detach()
output["scalar"]["loss_l1"] = loss_l1.detach()
output["scalar"]["loss_kl"] = loss_kl.detach()
output["scalar"]["iou_fg"] = calculate_iou(pred, gt, target_value=1)
output["scalar"]["iou_bg"] = calculate_iou(pred, gt, target_value=0)
output["scalar"]["precision"], output["scalar"]["recall"], output["scalar"]["f1"] = calculate_metrics(
pred, gt, target_value=1
)
return output, loss
@torch.no_grad()
def validation_step(
self,
data: dict[str, torch.Tensor],
iteration: int,
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
return self.training_step(data, iteration)
@torch.inference_mode()
@sync_timer("vae forward")
def forward(
self,
data: dict[str, torch.Tensor],
mode: Literal["dense", "hierarchical"] = "hierarchical",
max_samples_per_iter: int = 512**2,
resolution: int = 512,
min_resolution: int = 64, # for hierarchical
) -> dict[str, torch.Tensor]:
output = {}
# encode
if "latent" in data:
latent = data["latent"]
else:
posterior = self.encode(data)
output["posterior"] = posterior
latent = posterior.mode()
output["latent"] = latent
B = latent.shape[0]
# decode
hidden_states = self.decode(latent)
output["hidden_states"] = hidden_states # [B, N, hidden_dim] for the last cross-attention decoder
# the context norm can be moved out to avoid repeated computation
if self.config.use_flash_query:
hidden_states = self.norm_query_context(hidden_states)
# query
def chunked_query(grid_points):
if grid_points.shape[0] <= max_samples_per_iter:
return self.query(grid_points.unsqueeze(0), hidden_states).squeeze(-1) # [B, N]
all_pred = []
for i in range(0, grid_points.shape[0], max_samples_per_iter):
grid_chunk = grid_points[i : i + max_samples_per_iter]
pred_chunk = self.query(grid_chunk.unsqueeze(0), hidden_states)
all_pred.append(pred_chunk)
return torch.cat(all_pred, dim=1).squeeze(-1) # [B, N]
if mode == "dense":
grid_points = construct_grid_points(resolution).to(latent.device)
grid_points = grid_points.contiguous().view(-1, 3)
grid_vals = chunked_query(grid_points).float().view(B, resolution + 1, resolution + 1, resolution + 1)
elif mode == "hierarchical":
assert resolution >= min_resolution, "Resolution must be greater than or equal to min_resolution"
assert B == 1, "Only one batch is supported for hierarchical mode"
resolutions = []
res = resolution
while res >= min_resolution:
resolutions.append(res)
res = res // 2
resolutions.reverse() # e.g., [64, 128, 256, 512]
# dense-query the coarsest resolution
res = resolutions[0]
grid_points = construct_grid_points(res).to(latent.device)
grid_points = grid_points.contiguous().view(-1, 3)
grid_vals = chunked_query(grid_points).float().view(res + 1, res + 1, res + 1)
# sparse-query finer resolutions
dilate_kernel_3 = torch.ones(1, 1, 3, 3, 3, dtype=torch.float32, device=latent.device)
dilate_kernel_5 = torch.ones(1, 1, 5, 5, 5, dtype=torch.float32, device=latent.device)
for i in range(1, len(resolutions)):
res = resolutions[i]
# get the boundary grid mask in the coarser grid (where the grid_vals have different signs with at least one of its neighbors)
grid_signs = grid_vals >= 0
mask = torch.zeros_like(grid_signs)
mask[1:, :, :] += grid_signs[1:, :, :] != grid_signs[:-1, :, :]
mask[:-1, :, :] += grid_signs[:-1, :, :] != grid_signs[1:, :, :]
mask[:, 1:, :] += grid_signs[:, 1:, :] != grid_signs[:, :-1, :]
mask[:, :-1, :] += grid_signs[:, :-1, :] != grid_signs[:, 1:, :]
mask[:, :, 1:] += grid_signs[:, :, 1:] != grid_signs[:, :, :-1]
mask[:, :, :-1] += grid_signs[:, :, :-1] != grid_signs[:, :, 1:]
# empirical: also add those with abs(grid_vals) < 0.95
mask += grid_vals.abs() < 0.95
mask = (mask > 0).float()
# empirical: dilate the coarse mask
if res < 512:
mask = mask.unsqueeze(0).unsqueeze(0)
mask = F.conv3d(mask, weight=dilate_kernel_3, padding=1)
mask = mask.squeeze(0).squeeze(0)
# get the coarse coordinates
cidx_x, cidx_y, cidx_z = torch.nonzero(mask, as_tuple=True)
# fill to the fine indices
mask_fine = torch.zeros(res + 1, res + 1, res + 1, dtype=torch.float32, device=latent.device)
mask_fine[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
# empirical: dilate the fine mask
if res < 512:
mask_fine = mask_fine.unsqueeze(0).unsqueeze(0)
mask_fine = F.conv3d(mask_fine, weight=dilate_kernel_3, padding=1)
mask_fine = mask_fine.squeeze(0).squeeze(0)
else:
mask_fine = mask_fine.unsqueeze(0).unsqueeze(0)
mask_fine = F.conv3d(mask_fine, weight=dilate_kernel_5, padding=2)
mask_fine = mask_fine.squeeze(0).squeeze(0)
# get the fine coordinates
fidx_x, fidx_y, fidx_z = torch.nonzero(mask_fine, as_tuple=True)
# convert to float query points
query_points = torch.stack([fidx_x, fidx_y, fidx_z], dim=-1) # [N, 3]
query_points = query_points * 2 / res - 1 # [N, 3], in [-1, 1]
# query
pred = chunked_query(query_points).float()
# fill to the fine indices
grid_vals = torch.full((res + 1, res + 1, res + 1), -100.0, dtype=torch.float32, device=latent.device)
grid_vals[fidx_x, fidx_y, fidx_z] = pred
# print(f"[INFO] hierarchical: resolution: {res}, valid coarse points: {len(cidx_x)}, valid fine points: {len(fidx_x)}")
grid_vals = grid_vals.unsqueeze(0) # [1, res+1, res+1, res+1]
grid_vals[grid_vals <= -100.0] = float("nan") # use nans to ignore invalid regions
# extract mesh
meshes = []
for b in range(B):
vertices, faces = extract_mesh(grid_vals[b], resolution)
meshes.append((vertices, faces))
output["meshes"] = meshes
return output
|