PartPacker / vae /utils.py
ashawkey's picture
default to not decimate
8ba0984
raw
history blame
10.9 kB
"""
-----------------------------------------------------------------------------
Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
-----------------------------------------------------------------------------
"""
import os
from functools import wraps
from typing import Literal
import numpy as np
import torch
import trimesh
from kiui.mesh_utils import clean_mesh, decimate_mesh
# Adapted from https://github.com/Tencent/Hunyuan3D-2/blob/main/hy3dgen/shapegen/utils.py#L38
class sync_timer:
"""
Synchronized timer to count the inference time of `nn.Module.forward` or else.
set env var TIMER=1 to enable logging!
Example as context manager:
```python
with timer('name'):
run()
```
Example as decorator:
```python
@timer('name')
def run():
pass
```
"""
def __init__(self, name=None, flag_env="TIMER"):
self.name = name
self.flag_env = flag_env
def __enter__(self):
if os.environ.get(self.flag_env, "0") == "1":
self.start = torch.cuda.Event(enable_timing=True)
self.end = torch.cuda.Event(enable_timing=True)
self.start.record()
return lambda: self.time
def __exit__(self, exc_type, exc_value, exc_tb):
if os.environ.get(self.flag_env, "0") == "1":
self.end.record()
torch.cuda.synchronize()
self.time = self.start.elapsed_time(self.end)
if self.name is not None:
print(f"{self.name} takes {self.time} ms")
def __call__(self, func):
@wraps(func)
def wrapper(*args, **kwargs):
with self:
result = func(*args, **kwargs)
return result
return wrapper
@torch.no_grad()
def calculate_iou(pred: torch.Tensor, gt: torch.Tensor, target_value: int, thresh: float = 0) -> torch.Tensor:
"""Calculate the Intersection over Union (IoU) between two volumes.
Args:
pred (torch.Tensor): [*] continuous value between 0 and 1
gt (torch.Tensor): [*] discrete value of 0 or 1
target_value (int): The value to be considered as the target class
Returns:
torch.Tensor: IoU value
"""
# Ensure volumes have the same shape
assert pred.shape == gt.shape, "Volumes must have the same shape"
# binarize
pred_binary = pred > thresh
gt = gt > thresh
# Convert the volumes to boolean tensors for logical operations
intersection = torch.logical_and(pred_binary == target_value, gt == target_value).sum().float()
union = torch.logical_or(pred_binary == target_value, gt == target_value).sum().float()
# Compute IoU
iou = intersection / union if union != 0 else torch.tensor(0.0)
return iou
@torch.no_grad()
def calculate_metrics(
pred: torch.Tensor, gt: torch.Tensor, target_value: int = 1, thresh: float = 0.5
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Calculate Precision, Recall, and F1 between two volumes.
Args:
pred (torch.Tensor): [*] continuous value between 0 and 1
gt (torch.Tensor): [*] discrete value of 0 or 1
target_value (int): The value to be considered as the target class
Returns:
tuple: Precision, Recall, F1 values
"""
assert pred.shape == gt.shape, f"Pred {pred.shape} and gt {gt.shape} must have the same shape"
# Binarize prediction
pred_binary = pred > thresh
gt = gt > thresh
# True Positive (TP): pred == target_value and gt == target_value
true_positive = torch.logical_and(pred_binary == target_value, gt == target_value).sum().float()
# False Positive (FP): pred == target_value and gt != target_value
false_positive = torch.logical_and(pred_binary == target_value, gt != target_value).sum().float()
# False Negative (FN): pred != target_value and gt == target_value
false_negative = torch.logical_and(pred_binary != target_value, gt == target_value).sum().float()
# Precision: TP / (TP + FP), best to detect False Positives
precision = (
true_positive / (true_positive + false_positive) if (true_positive + false_positive) != 0 else torch.tensor(0.0)
)
# Recall: TP / (TP + FN), best to detect False Negatives
recall = (
true_positive / (true_positive + false_negative) if (true_positive + false_negative) != 0 else torch.tensor(0.0)
)
# f1: 2 / (1 / precision + 1 / recall)
f1 = 2 / (1 / precision + 1 / recall) if (precision != 0 and recall != 0) else torch.tensor(0.0)
return precision, recall, f1
# Adapted from https://github.com/Stability-AI/stablediffusion/blob/main/ldm/modules/distributions/distributions.py#L24
class DiagonalGaussianDistribution:
"""VAE latent"""
def __init__(self, mean, logvar, deterministic=False):
# mean, logvar: [B, L, D] x 2
self.mean, self.logvar = mean, logvar
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean, device=self.mean.device, dtype=self.mean.dtype)
def sample(self, weight: float = 1.0):
sample = weight * torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype)
x = self.mean + self.std * sample
return x
def kl(self, other=None, dims=[1, 2]):
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.mean(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=dims)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=dims,
)
def nll(self, sample, dims=[1, 2]):
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.mean(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)
def mode(self):
return self.mean
class DummyLatent:
def __init__(self, mean):
self.mean = mean
def sample(self, weight=0):
# simply perturb the mean
if weight > 0:
noise = torch.randn_like(self.mean) * weight
else:
noise = 0
return self.mean + noise
def mode(self):
return self.mean
def kl(self):
# just an l2 penalty
return 0.5 * torch.mean(torch.pow(self.mean, 2))
def construct_grid_points(
resolution: int,
indexing: str = "ij",
):
"""Generate dense grid points in [-1, 1]^3.
Args:
resolution (int): resolution of the grid
indexing (str, optional): indexing of the grid. Defaults to "ij".
Returns:
torch.Tensor: grid points (resolution + 1, resolution + 1, resolution + 1, 3), inside bbox.
"""
x = np.linspace(-1, 1, resolution + 1, dtype=np.float32)
y = np.linspace(-1, 1, resolution + 1, dtype=np.float32)
z = np.linspace(-1, 1, resolution + 1, dtype=np.float32)
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
xyzs = np.stack((xs, ys, zs), axis=-1)
xyzs = torch.from_numpy(xyzs).float()
return xyzs
_diso_session = None # lazy session for reuse
@sync_timer("extract_mesh")
def extract_mesh(
grid_vals: torch.Tensor,
resolution: int,
isosurface_level: float = 0,
backend: Literal["mcubes", "diso"] = "mcubes",
):
"""Extract mesh from grid occupancy.
Args:
grid_vals (torch.Tensor): [resolution + 1, resolution + 1, resolution + 1], assume to be TSDF in [-1, 1] (inner is positive)
resolution (int, optional): Grid resolution.
isosurface_level (float, optional): Iso-surface level. Defaults to 0.
backend (Literal["mcubes", "diso"], optional): Backend for mesh extraction. Defaults to "diso", which uses GPU and is faster.
Returns:
vertices (np.ndarray): [N, 3], float32, in [-1, 1]
faces (np.ndarray): [M, 3], int32
"""
grid_vals = grid_vals.view(resolution + 1, resolution + 1, resolution + 1)
if backend == "mcubes":
try:
import mcubes
except ImportError:
os.system("pip install pymcubes")
import mcubes
grid_vals = grid_vals.float().cpu().numpy()
verts, faces = mcubes.marching_cubes(grid_vals, isosurface_level)
verts = 2 * verts / resolution - 1.0 # normalize to [-1, 1]
elif backend == "diso":
try:
import diso
except ImportError:
os.system("pip install diso")
import diso
global _diso_session
if _diso_session is None:
_diso_session = diso.DiffDMC(dtype=torch.float32).cuda()
grid_vals = -grid_vals.float().cuda() # diso assumes inner is NEGATIVE!
verts, faces = _diso_session(grid_vals, deform=None, normalize=True) # verts in [0, 1]
verts = verts.cpu().numpy() * 2 - 1.0 # normalize to [-1, 1]
faces = faces.cpu().numpy()
return verts, faces
@sync_timer("postprocess_mesh")
def postprocess_mesh(mesh: trimesh.Trimesh, decimate_target=100000):
vertices = mesh.vertices
triangles = mesh.faces
if vertices.shape[0] > 0 and triangles.shape[0] > 0:
vertices, triangles = clean_mesh(vertices, triangles, remesh=False, min_f=25, min_d=5)
if decimate_target > 0 and triangles.shape[0] > decimate_target:
vertices, triangles = decimate_mesh(vertices, triangles, decimate_target, optimalplacement=False)
if vertices.shape[0] > 0 and triangles.shape[0] > 0:
vertices, triangles = clean_mesh(vertices, triangles, remesh=False, min_f=25, min_d=5)
mesh.vertices = vertices
mesh.faces = triangles
return mesh
def sphere_normalize(vertices):
bmin = vertices.min(axis=0)
bmax = vertices.max(axis=0)
bcenter = (bmax + bmin) / 2
radius = np.linalg.norm(vertices - bcenter, axis=-1).max()
vertices = (vertices - bcenter) / radius # to [-1, 1]
return vertices
def box_normalize(vertices, bound=0.95):
bmin = vertices.min(axis=0)
bmax = vertices.max(axis=0)
bcenter = (bmax + bmin) / 2
vertices = bound * (vertices - bcenter) / (bmax - bmin).max()
return vertices